首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Editor's Note     
This issue of Soviet Psychology — Vol. V, No. 1 — marks a new point in the development of English translations of Soviet psychology and psychiatry. Our original journal, published in Volumes I-IV as Soviet Psychology and Psychiatry, has given birth to two new journals: Soviet Psychology and Soviet Psychiatry. This will give International Arts and Sciences Press the opportunity to publish twice as much material from the fund of Soviet theory and research in the study of human behavior. The increased space in this new journal will allow for a broader coverage of Soviet work in psychology, as outlined in our last issue, the special Handbook of Soviet Psychology.  相似文献   

2.
It is well known to all those acquainted with D. N. Uznadze's theory of set [ustanovka] (1) that this theory was meant to answer the question of "the character and inner structure of human activity" [11; 79]. But, as A. T. Bochorishvili correctly noted, we do not yet have "clarity in basic concepts. … Soviet psychology cannot yet go so far as to speak of the content of the basic concept of the psychology of set, of the content of set itself" [5: 15]. As a panacea for overcoming these differences of opinion, Bochorishvili proposes that we "widely and actively develop investigations of the theoretical bases of the psychology of set as D. N. Uznadze understood if" (ibid.).  相似文献   

3.
Necrology     
The editor of Soviet Psychology reports with regret that the following deaths of Soviet colleagues have been announced in 1966 in the pages of Voprosy psikhologii and Zhurnal vysshey nervnoy deyatel'nosti im. I. P. Pavlova.  相似文献   

4.
At the end of 1965 an event occurred that will significantly affect the development of Soviet psychology: on December 6, 1965, V. N. Stoletov, Minister for Higher and Specialized Secondary Education of the RSFSR, issued a decree changing the Psychology Departments [otdeleniy] of Moscow and Leningrad Universities into separate Schools [fakul'tety] of Psychology, and establishing their structure. Students will be admitted to the Schools of Psychology beginning September 1, 1966.  相似文献   

5.
Abstract

The C-nucleoside analogs 6,7-dimethyl-3-β-D-erythrofuranosyl-1-phenylpyrazolo[3,4-b]quinoxaline 4 and 3-β- D -erythrofuranosyl-1-p-fluorophenylpyrazolo[3,4-b]quinoxaline 8 were prepared by dehydration of the polyhydroxyalkyl chain of 6,7-dimethyl-1-phenyl-3-( D -arabino-tetritol-1-yl)-pyrazolo[3,4-b]quinoxaline 3 and 1-p-fluorophenyl-3-( D -arabino-tetritol-1-yl)-pyrazolo[3,4-b]quinoxaline 7, respectively. The structure and anomeric configuration of the products were determined by n.m.r. spectroscopy. The mass spectra and biological activities in connection with chemical constitution are discussed.  相似文献   

6.
1. Attitude to the Discussion: A discussion of social psychology was opened in the pages of Voprosy psikhologii. [Translated in this journal, 1963, 1 (3), 32-38. — Ed.] This event has both a good and bad side. The good side is that, finally, the central organ of Soviet psychology has begun to speak about social psychology. Soviet psychologists will at last state their positive word about social psychology. The discussion will permit a more profound definition of the content of social psychology and will attract the attention of the Soviet public to the phenomena of social psychology. The bad side is that while much is said about the content of social psychology, the most urgent problems for Soviet social psychology is not so much one of its content as of the development of concrete methods and concrete investigations. A. V. Baranov's article [5] presents an incorrect understanding of the history and contemporary state of social psychology in the USSR.  相似文献   

7.
Abstract

The synthesis of pyrazolo[3,4-d]pyrimidine ribonucleoside 3′, 5′-cyclic phosphates related to cAMP, cIMP and cGMP has been achieved for the first time. Phosphorylation of 4-amino-6-methylthio-1-β-D-ribo-furanosylpyrazolo[3,4-d]pyrimidine (1) with POCl3 in trimethyl phosphate gave the corresponding 5′-phosphate (2a). DCC mediated intramolecular cyclization of 2a gave the corresponding 3′, 5′-cyclic phosphate (3a), which on subsequent dethiation provided the cAMP analog 4-amino-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidine 3′, 5′-cyclic phosphate (3b). A similar phosphorylation of 6-methylthio-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one (5), followed by cyclization with DCC gave the 3′, 5′-cyclic phosphate of 5 (9a). Dethiation of 9a with Raney nickel gave the cIMP analog 1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (9b). Oxidation of 9a with m-chloroperoxy benzoic acid, followed by ammonolysis provided the cGMP analog 6-amino-1-β-D-ribofuranosylpyrazolo [3, 4-d] pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (7). The structural assignment of these cyclic nucleotides was made by UV and H NMR spectroscopic studies.  相似文献   

8.
Abstract

Phase-transfer catalysis of pyrrolo[2,3-d]pyrimidine 4a with the halogenose 5 yields the anomers 6a and 7a. Deprotection with boron trichloride gives the chloro nucleosides 6b and 7b, which are converted into the potential anticytokinin 2 and its α-anomer 3.  相似文献   

9.
Abstract

The first chemical synthesis of 3-amino-1-β-D-ribofuranosyl-s-triazolo[5,1-c]-s-triazole (6) is described. Direct glycosylation of 3-amino-5(7)H-s-triazolo[5,1-c]-s-triazole (2) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (3) in the presence of TMS-triflate gave 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-s-triazolo[5, 1-c]-s-triazole (4) which, on ammonolysis, gave 6. The absolute structure of 6 is determined by X-ray diffraction techniques employing Mo Kα radiation. The structure is solved by direct methods and refined to the R value of 0.044 by using a full-matrix least-squares method. The sugar of 6 has a 3T2 configuration. The torsion angles about the C5′–C4′ bond are both gauche and the torsion angle about the glycosidic bond is in the anti range. Each azole ring of the aglycon is planar and the dihedral angle between the planes of the rings is 3.6°.  相似文献   

10.
Abstract

Acid catalyzed isomerization of 1-aryl-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-2-imidazolines (4) yields 1-aryl-4-(D-galacto-pentitol-1-yl)imidazoles (8) which can be also obtained by reductive desulphuration of 1-aryl-2-benzylthio-4-(D-galacto-pentitol-1-yl)imidazoles (6). Compounds (4) were obtained by desulphuration with Raney nickel from 1-aryl-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-imidazolidine-2-thiones (1) or 1-aryl-2-benzylthio-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-2-imidazolines (2).  相似文献   

11.
Abstract

Synthesis of methyl, glucosyl and ribosyl derivatives of 7-amino-2H, 4H-[1, 2, 3]triazolo [4, 5-c] [1, 2, 6] thiadiazine 5, 5-dioxide (1a) and 7-amino-4H- [1, 2, 5] thiadiazolo [3, 4-c][1, 2, 6] thiadiazine 5, 5-dioxide (2a) is described. The structures of the glycosyl derivatives are discussed on the basis of their PMR- and UV-spectroscopic data.  相似文献   

12.
Abstract

Glycosylation of the heterocycle, 6,7-dihydro-imidazo [4,5-d] [1,3] diazepin-8(3H)-one, with suitably protected sugars under the influence of Lewis acid catalysts gave the β-D-ribo- and 3′-deoxy-β-D-erythropento-furanosyl nucleosides. Deprotection and reduction of the keto nucleosides with sodium borohydride gave the (8R)- and (8S)-3-β-D-glycofuranosyl-3,6,7,8-tetrahydroimidazo [4,5-d]-[1,3] diazepin-8-ols, the (8R)-isomers of which are potent inhibitors of adenosine deaminase.  相似文献   

13.
Abstract

Fusion of 2-trimethylsilylpyridine and tetra-O-acetyl-aldehydo-D-xylose or 2,3:4,5-di-O-isopropylidene-aldehydo-L-arabinose led, after removing of the protecting groups, to 2-(pentitol-1-yl)pyridines of D-gulo and D-ido or L-manno configurations. Dehydration of the sugar-chain with D-gulo and D-ido configurations gave the corresponding 2′,5′-anhydro derivatives, whereas 2-(5-O-isopropyl-L-manno-pentitol-1-yl)-pyridine was the only compound formed by dehydration of the sugar-chain with L-manno configuration. Structural proofs are based on 1H and 13C NMR spectra.  相似文献   

14.
The editorial staff of the journal Voprosy psikhologii and the Soviet psychological community heartily congratulate Aleksey Nikolayevich Leont'yev on receiving the highest scientific award — the Lenin Prize — for his book Problemy razvitiya psikhiki [Problems of mental development].  相似文献   

15.
Abstract

The fusion reaction between 2-trifluoromethylnaphth[2,3-d]imidazole (1) and 1-0-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (2) leads to 2,3′,5′-tri-O-benzoyl-1-β-D-ribofuranosylnaphth[2,3-d]imidazole (3). Debenzoylation of (3) gives the corresponding nucleoside 1-β-D-ribofuranosyl -2-trifluoromethylnaphth[2,3-d]imidazole (4). Structural proofs are based on elementary analysis, UV-and 1H-NMR spectra.  相似文献   

16.
Abstract

The fusion reaction between 1-trimethylsilyl-naphth[2,3-d]imidazole (3) and its 2-methyl derivative (4) with 2, 3, 5-tri-O-benzoyl-1-bromo-D-ribofuranose (6) leads to anomeric mixtures of the corresponding 2', 3', 5'-tri-O-benzoyl-1α- and β-D-ribofuranosylnaphth[2,3-d]imidazoles (7, 11 and 13). Separation of the anomers was achieved by chromatographical means and debenzoylation yielded the corresponding nucleosides (8, 12 and 10, 14). Structural proofs are based on elementary analysis, UV- and 1H-NMR spectra.  相似文献   

17.
Abstract

The synthesis of several 5′-substituted derivatives of ribavirin (1) and tiazofurin (3) are described. Direct acylation of 1 with the appropriate acyl chloride in pyridine-DMF gave the corresponding 5′-O-acyl derivatives (4a-h). Tosylation of the 2′, 3′-O-isopropylidene-ribavirin (6) and tiazofurin (11) with p-toluenesulfonyl chloride gave the respective 5′-O-p-tolylsulfonyl derivatives (7a and 12a), which were converted to 5′-azido-5′-deoxy derivatives (7b and 12b) by reacting with sodium/lithium azide. Deisopropylidenation of 7b and 12b, followed by catalytic hydrogenation afforded 1-(5-amino-5-deoxy-β-D)-ribofuranosyl)-1, 2, 4-triazole-3-carboxamide (10b) and 2 - (5 -amino- 5-deoxy- β-D-ribofuranosyl) thiazole-4-carboxamide (16), respectively. Treatment of 6 with phthalimide in the presence of triphenylphosphine and diethyl azodicarboxylate furnished the corresponding 5′-deoxy-5′-phthaloylamino derivative (9). Reaction of 9 with n-butylamine and subsequent deisopropylidenation provided yet another route to 10b. Selective 5′-thioacetylation of 6 and 11 with thiolacetic acid, followed by saponification and deisopropylidenation afforded 5′-deoxy-5′-thio derivatives of 1-β-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide (8a) and 2-β-D-ribofuranosylthiazole-4-carboxamide (15), respectively.  相似文献   

18.
Abstract

5′-O-[N-(Aminoacyl)sulfamoyl]-uridines and -thymidines 4a-12a and 4b-12b have been synthesized and tested against Herpes Simplex virus type 2 (HSV-2) and as cytostatics. Condensation of 2′,3′-O-isopropylidene-5′-O-sulfamoyluridine and 3′-O-acetyl-5′-O-sulfamoylthymidine with the N-hydroxysuccinimide esters of Boc-L-Ser(Bzl), (2R, 3S)-3-benzyloxycarbonylamino-2-hydroxy-4-phenylbuta-noic acid [(2R, 3S-N-Z-AHPBA], (2R, 3S) and (2S, 3R)-N-Boc-AHPBA gave 4a,b-7a,b, which after removal of the protecting groups provided 1Oa,b-12a,b. A study of the selective removal of the O-Bzl protecting group from the L-Ser derivatives 4a,b, without hydrogenation of the pyrimidine ring, has been carried out. Only the fully protected uridine derivatives 4a-7a did exhibit high anti-HSV-2 activity, and none of the synthesized compounds showed significant cytostatic activity against HeLa cells cultures.  相似文献   

19.
Abstract

The title compound 1 is prepared from thymidine 5′-phos-phorodiamidate (2) and inorganic pyrophosphate (3) in anhydrous DMF, at 30–32°C. The products of alkaline hydrolysis of 1, at room temperature, are: thymidine 5′-phosphoramidate (4), thymidine 3′-phosphoramidate (8) and thymidine (9) as well as 3 and inorganic trimetaphosphate (10). In 1 N NH4OH, 1 reacts with cytidine (15) to form cytidylyl-/2T(3′)-5′/-thymidine (16) and a mixture of cytidine 2′,3′-cyclic phosphate (17) and 9.  相似文献   

20.
Abstract

Treatment of ψ-uridine (3) with α-acetoxyisobutyryl chloride in acetonitrile gave, after deprotection, a mixture of four products: 5-(2-chloro-2-deoxy-β-D-arabinofuranosyl)uracil (10a), its 3′-chloro xylo isomer (11a), 2′-chloro-2′-deoxy-ψ-uridine (9a) and 4,2′-anhydro-ψ-uridine (8a). Each component was isolated by column chromatography. Compound 9 was converted to the known 1,3-dimethyl derivative 2 by treatment with DMF-dimethylacetal. Treatment of 10 and 11 with NaOMe/MeOH afforded the same 4,2′-anhydro-C-nucleoside 8. The 1,3-dimethyl analogues of 10 and 11, however, were converted to 2′,3′-anhydro-1,3-dimethyl-ψ-uridine (13) upon base treatment. The epoxide 13 was also prepared in good yield by treatment of 10 and 11 with DMF-dimethylacetal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号