共查询到20条相似文献,搜索用时 0 毫秒
1.
Identifying protein complexes based on density and modularity in protein-protein interaction network
Background
Identifying protein complexes is crucial to understanding principles of cellular organization and functional mechanisms. As many evidences have indicated that the subgraphs with high density or with high modularity in PPI network usually correspond to protein complexes, protein complexes detection methods based on PPI network focused on subgraph's density or its modularity in PPI network. However, dense subgraphs may have low modularity and subgraph with high modularity may have low density, which results that protein complexes may be subgraphs with low modularity or with low density in the PPI network. As the density-based methods are difficult to mine protein complexes with low density, and the modularity-based methods are difficult to mine protein complexes with low modularity, both two methods have limitation for identifying protein complexes with various density and modularity.Results
To identify protein complexes with various density and modularity, including those have low density but high modularity and those have low modularity but high density, we define a novel subgraph's fitness, f ρ , as f ρ = (density) ρ *(modularity)1-ρ, and propose a novel algorithm, named LF_PIN, to identify protein complexes by expanding seed edges to subgraphs with the local maximum fitness value. Experimental results of LF-PIN in S.cerevisiae show that compared with the results of fitness equal to density (ρ = 1) or equal to modularity (ρ = 0), the LF-PIN identifies known protein complexes more effectively when the fitness value is decided by both density and modularity (0<ρ<1). Compared with the results of seven competing protein complex detection methods (CMC, Core-Attachment, CPM, DPClus, HC-PIN, MCL, and NFC) in S.cerevisiae and E.coli, LF-PIN outperforms other seven methods in terms of matching with known complexes and functional enrichment. Moreover, LF-PIN has better performance in identifying protein complexes with low density or with low modularity.Conclusions
By considering both the density and the modularity, LF-PIN outperforms other protein complexes detection methods that only consider density or modularity, especially in identifying known protein complexes with low density or low modularity.2.
Background
Protein complexes play an important role in biological processes. Recent developments in experiments have resulted in the publication of many high-quality, large-scale protein-protein interaction (PPI) datasets, which provide abundant data for computational approaches to the prediction of protein complexes. However, the precision of protein complex prediction still needs to be improved due to the incompletion and noise in PPI networks.Results
There exist complex and diverse relationships among proteins after integrating multiple sources of biological information. Considering that the influences of different types of interactions are not the same weight for protein complex prediction, we construct a multi-relationship protein interaction network (MPIN) by integrating PPI network topology with gene ontology annotation information. Then, we design a novel algorithm named MINE (identifying protein complexes based on Multi-relationship protein Interaction NEtwork) to predict protein complexes with high cohesion and low coupling from MPIN.Conclusions
The experiments on yeast data show that MINE outperforms the current methods in terms of both accuracy and statistical significance.3.
Background
Proteins dynamically interact with each other to perform their biological functions. The dynamic operations of protein interaction networks (PPI) are also reflected in the dynamic formations of protein complexes. Existing protein complex detection algorithms usually overlook the inherent temporal nature of protein interactions within PPI networks. Systematically analyzing the temporal protein complexes can not only improve the accuracy of protein complex detection, but also strengthen our biological knowledge on the dynamic protein assembly processes for cellular organization.Results
In this study, we propose a novel computational method to predict temporal protein complexes. Particularly, we first construct a series of dynamic PPI networks by joint analysis of time-course gene expression data and protein interaction data. Then a Time Smooth Overlapping Complex Detection model (TS-OCD) has been proposed to detect temporal protein complexes from these dynamic PPI networks. TS-OCD can naturally capture the smoothness of networks between consecutive time points and detect overlapping protein complexes at each time point. Finally, a nonnegative matrix factorization based algorithm is introduced to merge those very similar temporal complexes across different time points.Conclusions
Extensive experimental results demonstrate the proposed method is very effective in detecting temporal protein complexes than the state-of-the-art complex detection techniques.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2105-15-335) contains supplementary material, which is available to authorized users. 相似文献4.
We introduce clustering with overlapping neighborhood expansion (ClusterONE), a method for detecting potentially overlapping protein complexes from protein-protein interaction data. ClusterONE-derived complexes for several yeast data sets showed better correspondence with reference complexes in the Munich Information Center for Protein Sequence (MIPS) catalog and complexes derived from the Saccharomyces Genome Database (SGD) than the results of seven popular methods. The results also showed a high extent of functional homogeneity. 相似文献
5.
In this paper, we present a method based on local density and random walks (LDRW) for core-attachment complexes detection in protein-protein interaction (PPI) networks whether they are weighted or not. Our LDRW method consists of two stages. Firstly, it finds all the protein-complex cores based on local density of subnetwork. Then it uses random walks with restarts for finding the attachment proteins of each detected core to form complexes. We evaluate the effectiveness of our method using two different yeast PPI networks and validate the biological significance of the predicted protein complexes using known complexes in the Munich Information Center for Protein Sequence (MIPS) and Gene Ontology (GO) databases. We also perform a comprehensive comparison between our method and other existing methods. The results show that our method can find more protein complexes with high biological significance and obtains a significant improvement. Furthermore, our method is able to identify biologically significant overlapped protein complexes. 相似文献
6.
MOTIVATION: Biologically significant information can be revealed by modeling large-scale protein interaction data using graph theory based network analysis techniques. However, the methods that are currently being used draw conclusions about the global features of the network from local connectivity data. A more systematic approach would be to define global quantities that measure (1) how strongly a protein ties with the other parts of the network and (2) how significantly an interaction contributes to the integrity of the network, and connect them with phenotype data from other sources. In this paper, we introduce such global connectivity measures and develop a stochastic algorithm based upon percolation in random graphs to compute them. RESULTS: We show that, in terms of global connectivities, the distribution of essential proteins is distinct from the background. This observation highlights a fundamental difference between the essential and the non-essential proteins in the network. We also find that the interaction data obtained from different experimental methods such as immunoprecipitation and two-hybrid techniques contribute differently to network integrities. Such difference between different experimental methods can provide insight into the systematic bias present among these techniques. SUPPLEMENTARY INFORMATION: The full list of our results can be found in the supplemental web site http://www.nas.nasa.gov/Groups/SciTech/nano/msamanta/projects/percolation/index.php 相似文献
7.
Background
Protein interaction networks (PINs) are known to be useful to detect protein complexes. However, most available PINs are static, which cannot reflect the dynamic changes in real networks. At present, some researchers have tried to construct dynamic networks by incorporating time-course (dynamic) gene expression data with PINs. However, the inevitable background noise exists in the gene expression array, which could degrade the quality of dynamic networkds. Therefore, it is needed to filter out contaminated gene expression data before further data integration and analysis.Results
Firstly, we adopt a dynamic model-based method to filter noisy data from dynamic expression profiles. Then a new method is proposed for identifying active proteins from dynamic gene expression profiles. An active protein at a time point is defined as the protein the expression level of whose corresponding gene at that time point is higher than a threshold determined by a standard variance involved threshold function. Furthermore, a noise-filtered active protein interaction network (NF-APIN) is constructed. To demonstrate the efficiency of our method, we detect protein complexes from the NF-APIN, compared with those from other dynamic PINs.Conclusion
A dynamic model based method can effectively filter out noises in dynamic gene expression data. Our method to compute a threshold for determining the active time points of noise-filtered genes can make the dynamic construction more accuracy and provide a high quality framework for network analysis, such as protein complex prediction.8.
Zoltán Dezs? Yuri Nikolsky Tatiana Nikolskaya Jeremy Miller David Cherba Craig Webb Andrej Bugrim 《BMC systems biology》2009,3(1):36
Background
The identification of key target nodes within complex molecular networks remains a common objective in scientific research. The results of pathway analyses are usually sets of fairly complex networks or functional processes that are deemed relevant to the condition represented by the molecular profile. To be useful in a research or clinical laboratory, the results need to be translated to the level of testable hypotheses about individual genes and proteins within the condition of interest. 相似文献9.
10.
Dukka BK Tomita E Suzuki J Horimoto K Akutsu T 《Journal of bioinformatics and computational biology》2006,4(1):19-42
With the advent of experimental technologies like chemical cross-linking, it has become possible to obtain distances between specific residues of a newly sequenced protein. These types of experiments usually are less time consuming than X-ray crystallography or NMR. Consequently, it is highly desired to develop a method that incorporates this distance information to improve the performance of protein threading methods. However, protein threading with profiles in which constraints on distances between residues are given is known to be NP-hard. By using the notion of a maximum edge-weight clique finding algorithm, we introduce a more efficient method called FTHREAD for profile threading with distance constraints that is 18 times faster than its predecessor CLIQUETHREAD. Moreover, we also present a novel practical algorithm NTHREAD for profile threading with Non-strict constraints. The overall performance of FTHREAD on a data set shows that although our algorithm uses a simple threading function, our algorithm performs equally well as some of the existing methods. Particularly, when there are some unsatisfied constraints, NTHREAD (Non-strict constraints threading algorithm) performs better than threading with FTHREAD (Strict constraints threading algorithm). We have also analyzed the effects of using a number of distance constraints. This algorithm helps the enhancement of alignment quality between the query sequence and template structure, once the corresponding template structure is determined for the target sequence. 相似文献
11.
Background
The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human protein interaction network. This network was analyzed for important proteins and processes that are specific for the HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in virus-host dynamics. 相似文献12.
Background
Recently, large data sets of protein-protein interactions (PPI) which can be modeled as PPI networks are generated through high-throughput methods. And locally dense regions in PPI networks are very likely to be protein complexes. Since protein complexes play a key role in many biological processes, detecting protein complexes in PPI networks is one of important tasks in post-genomic era. However, PPI networks are often incomplete and noisy, which builds barriers to mining protein complexes.Results
We propose a new and effective algorithm based on robustness to detect overlapping clusters as protein complexes in PPI networks. And in order to improve the accuracy of resulting clusters, our algorithm tries to reduce bad effects brought by noise in PPI networks. And in our algorithm, each new cluster begins from a seed and is expanded through adding qualified nodes from the cluster's neighbourhood nodes. Besides, in our algorithm, a new distance measurement method between a cluster K and a node in the neighbours of K is proposed as well. The performance of our algorithm is evaluated by applying it on two PPI networks which are Gavin network and Database of Interacting Proteins (DIP). The results show that our algorithm is better than Markov clustering algorithm (MCL), Clique Percolation method (CPM) and core-attachment based method (CoAch) in terms of F-measure, co-localization and Gene Ontology (GO) semantic similarity.Conclusions
Our algorithm detects locally dense regions or clusters as protein complexes. The results show that protein complexes generated by our algorithm have better quality than those generated by some previous classic methods. Therefore, our algorithm is effective and useful.13.
MOTIVATION: Progress in large-scale experimental determination of protein-protein interaction networks for several organisms has resulted in innovative methods of functional inference based on network connectivity. However, the amount of effort and resources required for the elucidation of experimental protein interaction networks is prohibitive. Previously we, and others, have developed techniques to predict protein interactions for novel genomes using computational methods and data generated from other genomes. RESULTS: We evaluated the performance of a network-based functional annotation method that makes use of our predicted protein interaction networks. We show that this approach performs equally well on experimentally derived and predicted interaction networks, for both manually and computationally assigned annotations. We applied the method to predicted protein interaction networks for over 50 organisms from all domains of life, providing annotations for many previously unannotated proteins and verifying existing low-confidence annotations. AVAILABILITY: Functional predictions for over 50 organisms are available at http://bioverse.compbio.washington.edu and datasets used for analysis at http://data.compbio.washington.edu/misc/downloads/nannotation_data/. SUPPLEMENTARY INFORMATION: A supplemental appendix gives additional details not in the main text. (http://data.compbio.washington.edu/misc/downloads/nannotation_data/supplement.pdf). 相似文献
14.
Background
Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges.Results
To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes.Conclusions
We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting that the roles of edges are critical in discovering protein complexes.15.
From pull-down data to protein interaction networks and complexes with biological relevance 总被引:1,自引:0,他引:1
Motivation: Recent improvements in high-throughput Mass Spectrometry(MS) technology have expedited genome-wide discovery of protein–proteininteractions by providing a capability of detecting proteincomplexes in a physiological setting. Computational inferenceof protein interaction networks and protein complexes from MSdata are challenging. Advances are required in developing robustand seamlessly integrated procedures for assessment of protein–proteininteraction affinities, mathematical representation of proteininteraction networks, discovery of protein complexes and evaluationof their biological relevance. Results: A multi-step but easy-to-follow framework for identifyingprotein complexes from MS pull-down data is introduced. It assessesinteraction affinity between two proteins based on similarityof their co-purification patterns derived from MS data. It constructsa protein interaction network by adopting a knowledge-guidedthreshold selection method. Based on the network, it identifiesprotein complexes and infers their core components using a graph-theoreticalapproach. It deploys a statistical evaluation procedure to assessbiological relevance of each found complex. On Saccharomycescerevisiae pull-down data, the framework outperformed othermore complicated schemes by at least 10% in F1-measure and identified610 protein complexes with high-functional homogeneity basedon the enrichment in Gene Ontology (GO) annotation. Manual examinationof the complexes brought forward the hypotheses on cause offalse identifications. Namely, co-purification of differentprotein complexes as mediated by a common non-protein molecule,such as DNA, might be a source of false positives. Protein identificationbias in pull-down technology, such as the hydrophilic bias couldresult in false negatives. Contact: samatovan{at}ornl.gov Supplementary information: Supplementary data are availableat Bioinformatics online.
Associate Editor: Jonathan Wren
Present address: Department of Biomedical Informatics, VanderbiltUniversity, Nashville, TN 37232.
The authors wish it to be known that, in their opinion, thefirst two authors should be regarded as joint First Authors. 相似文献
16.
In this paper, we present a method for core-attachment complexes identification based on maximal frequent patterns (CCiMFP) in yeast protein-protein interaction (PPI) networks. First, we detect subgraphs with high degree as candidate protein cores by mining maximal frequent patterns. Then using topological and functional similarities, we combine highly similar protein cores and filter insignificant ones. Finally, the core-attachment complexes are formed by adding attachment proteins to each significant core. We experimentally evaluate the performance of our method CCiMFP on yeast PPI networks. Using gold standard sets of protein complexes, Gene Ontology (GO), and localization annotations, we show that our method gains an improvement over the previous algorithms in terms of precision, recall, and biological significance of the predicted complexes. The colocalization scores of our predicted complex sets are higher than those of two known complex sets. Moreover, our method can detect GO-enriched complexes with disconnected cores compared with other methods based on the subgraph connectivity. 相似文献
17.
Background
Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification.Results
A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics.Conclusions
The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.18.
Determining protein function is one of the most challenging problems of the post-genomic era. The availability of entire genome sequences and of high-throughput capabilities to determine gene coexpression patterns has shifted the research focus from the study of single proteins or small complexes to that of the entire proteome. In this context, the search for reliable methods for assigning protein function is of primary importance. There are various approaches available for deducing the function of proteins of unknown function using information derived from sequence similarity or clustering patterns of co-regulated genes, phylogenetic profiles, protein-protein interactions (refs. 5-8 and Samanta, M.P. and Liang, S., unpublished data), and protein complexes. Here we propose the assignment of proteins to functional classes on the basis of their network of physical interactions as determined by minimizing the number of protein interactions among different functional categories. Function assignment is proteome-wide and is determined by the global connectivity pattern of the protein network. The approach results in multiple functional assignments, a consequence of the existence of multiple equivalent solutions. We apply the method to analyze the yeast Saccharomyces cerevisiae protein-protein interaction network. The robustness of the approach is tested in a system containing a high percentage of unclassified proteins and also in cases of deletion and insertion of specific protein interactions. 相似文献
19.
An automated method for finding molecular complexes in large protein interaction networks 总被引:12,自引:0,他引:12
Background
Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. 相似文献20.
Shevchenko A Schaft D Roguev A Pijnappel WW Stewart AF Shevchenko A 《Molecular & cellular proteomics : MCP》2002,1(3):204-212
We employed a combination of tandem affinity purification and mass spectrometry for deciphering protein complexes and the protein interaction network in budding yeast. 53 genes were epitope-tagged, and their interaction partners were isolated by two-step immunoaffinity chromatography from whole cell lysates. 38 baits pulled down a total of 220 interaction partners, which are members of 19 functionally distinct protein complexes. We identified four proteins shared between complexes of different functionality thus charting segments of a protein interaction network. Concordance with the results of genome-wide two-hybrid screening was poor (14% of identified interactors overlapped) suggesting that the two approaches may provide complementary views on physical interactions within the proteome. 相似文献