首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GLUT1 glucose transporter cDNA was modified to introduce a single amino acid substitution of aspartic acid for asparagine 415, which is conserved among all facilitative glucose transporter isoforms. Although a significant amount of the mutated transporter was expressed into plasma membranes of Chinese hamster ovary cells by transfection with expression vector, almost no increase in glucose transport activity was observed. Analysis of glucose uptake with Lineweaver-Burk plot depicts that the mutation induced a marked decrease (more than 5-fold) in turnover number and a slight increase (1.5-fold) in Km compared with the wild-type GLUT1. Results obtained with cytochalasin B and ethylidene glucose suggested that the inner but not outer glucose binding site was modulated. These results suggest that asparagine 415 is located close to the inner glucose binding site and the putative inner gate of GLUT1 glucose transporter and that an ionic charge in this domain might play an important role in the rate of conformational change between an inward-facing form and an outward-facing form of glucose transporter.  相似文献   

2.
The role of N-glycosylation of GLUT1 for glucose transport activity.   总被引:6,自引:0,他引:6  
To elucidate a functional role of N-glycosylation in glucose transporters, we introduced oligonucleotide-directed mutagenesis in GLUT1 cDNA to remove the possible site for N-linked glycosylation. The wild-type and the mutated GLUT1 cDNAs which induced a mutation of Asn at residue 45 to Asp, Tyr, or Gln were transfected and stably expressed into Chinese hamster ovary cells. The expressed wild-type and the mutated GLUT1 was demonstrated to be a broad band of a 45-60-kDa form and a sharp band of a 38-kDa form on Western blot analysis, respectively, indicating no glycosylation in the mutated GLUT1. Although the cell surface labeling of the glucose transporters demonstrated the presence of the glycosylation-defective glucose transporters on the cells surface, photoaffinity labeling of glycosylation-defective GLUT1 with [3H] cytochalasin B and a photoreactive mannose derivative, [3H]2-N-4-(1-azi-2,2,2,trifluoroethyl)benzoyl-1,3-bis(D-mannos+ ++-4-yloxy)-2- propylamine in the membranes was observed to be 40-70 and 15-30% of that of the wild-type GLUT1, respectively. The kinetic study of 2-deoxyglucose uptake revealed that the glycosylation-defective GLUT1 had a 2-2.5-fold greater Km value for 2-deoxyglucose uptake compared with the wild-type GLUT1. These observations strongly suggest that 1) N-glycosylation of GLUT1 glucose transporter is only on Asn 45 and 2) N-glycosylation plays an important role in maintaining a structure of glucose transporter with high affinity for glucose, thus, with high transport activity.  相似文献   

3.
C F Burant  G I Bell 《Biochemistry》1992,31(42):10414-10420
Four facilitative glucose transporters isoforms, GLUT1/erythrocyte, GLUT2/liver, GLUT3/brain, and GLUT4/muscle-fat, as well as chimeric transporter proteins were expressed in Xenopus oocytes, and their properties were studied. The relative Km's of the transporters for 2-deoxyglucose were GLUT3 (Km = 1.8 mM) > GLUT4 (Km = 4.6 mM) > GLUT1 (Km = 6.9 mM) > GLUT2 (Km = 17.1 mM). In a similar fashion, the uptake of 2-deoxyglucose by GLUT1-, GLUT2-, and GLUT3-expressing oocytes was inhibited by a series of unlabeled hexoses and pentoses and by cytochalasin B in a similar hierarchical order. To determine if the functional unit of the glucose transporter was a monomer or higher-order multimer, the high-affinity transporter GLUT3 was coexpressed with either the low-affinity GLUT2 or a GLUT3 mutant which contained a transport inactivating Trp410-->Leu substitution. In oocytes expressing both GLUT2 and GLUT3, the transport activity associated with each transporter isoform could be distinguished kinetically. Similarly, there was no alteration in the kinetic parameters of GLUT3, or the ability of glucose or cytochalasin B to inhibit 2-deoxyglucose uptake, when coexpressed with up to a 3-fold greater amount of functionally inactive mutant of GLUT3. These studies suggest that the family of glucose transporters have similar binding sites which may be in the form of a functional monomeric unit when expressed in Xenopus oocytes.  相似文献   

4.
The structure-function relationship of the HepG2/erythrocyte-type glucose transporter (GLUT1) has been studied by in vitro site-directed mutagenesis. Chinese hamster ovary clones in which glucose transporters were transfected were shown by Western blotting with a GLUT1 anti-COOH-terminal peptide antibody to have expression levels of Gln282----Leu, Asn288----Ile, and Asn317----Ile mutations that were comparable with the wild type. All three mutant GLUT1 clones had high 2-deoxy-D-glucose transport activity compared with a nontransfected clone, suggesting that these residues are not absolutely required for the transport function. We have examined the possibility that the inner and outer portions of the transport pathway are structurally separate by measuring the interaction of the mutant transporters with the inside site-specific ligand cytochalasin B and the outside site-specific ligand 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4 -yloxy)-2- propylamine (ATB-BMPA). All three mutant GLUT1 clones showed high levels of cytochalasin B labeling, and the N288I and N317I mutants showed high levels of ATB-BMPA labeling. In contrast to the transport and cytochalasin B labeling results, the transmembrane helix 7 Gln282----Leu mutant was labeled by ATB-BMPA to a level that was only 5% of the level observed in the wild type. We have confirmed that this mutant was defective in the outer site by comparing the inhibition of wild-type and mutant 2-deoxy-D-glucose transport by the outside site-specific ligand 4,6-O-ethylidene-D-glucose. 4,6-O-Ethylidene-D-glucose inhibited wild-type transport with a Ki of approximately 12 mM, but this was increased to greater than 120 mM in the Gln282----Leu mutant. Thus, of the 3 residues mutated in this study, only glutamine 282 substitution causes a major perturbation in function, and this is a specific and striking reduction in the affinity for the outside site-specific ligands ATB-BMPA and 4,6-O-ethylidene-D-glucose.  相似文献   

5.
The intracellular C-terminal domain is diverse in size and amino acid sequence among facilitative glucose transporter isoforms. The characteristics of glucose transport are also divergent, and GLUT2 has far higher Km and Vmax values compared with GLUT1. To investigate the role of the intracellular C-terminal domain in glucose transport, we expressed in Chinese hamster ovary cells the mutated GLUT1 protein whose intracellular C-terminal domain was replaced with that of GLUT2 by means of engineering the chimeric cDNA. Cytochalasin B, for which GLUT2 protein has much lower affinity, bound to this chimeric protein in a fashion similar to GLUT1. In contrast, greater transport activity was observed in this chimeric glucose transporter compared with the wild-type GLUT1 at 10 mM 2-deoxy-D-glucose concentration. The kinetic studies on 2-deoxy-D-glucose uptake revealed a 3.8-fold increase in Km and a 4.3-fold increase in Vmax in this chimeric glucose transporter compared with the wild-type GLUT1. Thus, replacement of the intracellular C-terminal domain confers the GLUT2-like property on the glucose transporter. These results strongly suggest that the diversity of intracellular C-terminal domain contributes to the diversity of glucose transport characteristics among isoforms.  相似文献   

6.
All 6 tryptophan residues in the human HepG2-type glucose transporter (Glut1) were individually altered by site-directed mutagenesis to investigate the role of these residues in transport function. Tryptophan residues in positions 48, 65, 186, 363, 388, and 412 of Glut1 were changed to either a glycine or leucine residue. Mutant mRNAs were synthesized and injected into Xenopus laevis oocytes. Transporter function as assessed by uptake of 2-deoxy-D-[3H]glucose or transport of 3-O-[3H]methylglucose was decreased in the 388 and 412 mutants but was unaltered in all other mutants. The amount of the mutant transporters expressed in total membrane and plasma membrane fractions was measured using Glut1-specific antibodies. Calculation of the intrinsic transport activity of each of the mutants using these data demonstrated that the reduced transport activity of the 412 mutants was caused entirely by a dramatic decrease in the intrinsic activity of the mutant proteins whereas the reduced activity of the 388 mutants was a result of a decreased level of the protein in oocytes, decreased targeting to the plasma membrane, and a modest decrease in the intrinsic activity. Protease/glycosidase mapping of in vitro translation products indicated that the effects of the 388 and 412 point mutations could not be attributed to a disruption in the ability of the mutant proteins to insert properly into the membrane. The ID50 for cytochalasin B inhibition of 2-deoxyglucose uptake was increased from 5 x 10(-7) M for the wild-type Glut1 to 4 x 10(-6) M in the 388 mutants but was unaltered in the 412 mutants. These observations suggest that 1) Trp-412 may comprise part of a hexose binding site or is involved in maintaining a local tertiary structure critical for transport function; 2) Trp-388 is involved in stabilizing the equilibrium binding of cytochalasin B to the transporter. Trp-388 may therefore lie near a substrate binding site and also appears to participate in stabilization of local tertiary structure important for full catalytic activity and efficient targeting to the Xenopus plasma membrane.  相似文献   

7.
Glucose inhibitable cytochalasin B binding to erythrocyte membranes has been used as a marker of the glucose transporter. Glucose transport and cytochalasin B binding in rabbit erythrocytes differ from those activities found in human erythrocytes. We evaluated the uptake of 3-0-methylglucose and found similar Km (4.81 +/- 1.20 mM (SEM) and 6.59 +/- 0.72 mM) though significantly different Vmax (5.2 +/- 0.7 nM . min-1/10(9) cells and 234 +/- 13 nM X min -1/10(9) cells, p less than 0.001) for rabbit and human erythrocytes, respectively. Equilibrium binding of cytochalasin B to human erythrocyte membranes demonstrates a high affinity cytochalasin B binding site (Kd 38.6 +/- 22.7 nM) which is displaced by glucose. No comparable glucose inhibitable cytochalasin B site exists for rabbit erythrocyte membranes. Photoaffinity labeling of cytochalasin B confirms the presence of a glucose inhibitable cytochalasin B binding site in human, but not rabbit erythrocyte membranes. Cytochalasin B binding is a useful method in the identification of the glucose transporter in human cells, but the technique may be less useful in other species.  相似文献   

8.
L A Sultzman  A Carruthers 《Biochemistry》1999,38(20):6640-6650
The human erythrocyte sugar transporter is thought to function either as a simple carrier (sugar import and sugar export sites are presented sequentially) or as a fixed-site carrier (sugar import and sugar export sites are presented simultaneously). The present study examines each hypothesis by analysis of the rapid kinetics of reversible cytochalasin B binding to the sugar export site in the presence and absence of sugars that bind to the sugar import site. Cytochalasin B binding to the purified, human erythrocyte glucose transport protein (GLUT1) induces quenching of GLUT1 intrinsic tryptophan fluorescence. The time-course of GLUT1 fluorescence quenching reflects a second-order process characterized by simple exponential kinetics. The pseudo-first-order rate constant describing fluorescence decay (kobs) increases linearly with [cytochalasin B] while the extent of fluorescence quenching increases in a saturable manner with [cytochalasin B]. Rate constants for cytochalasin B binding to GLUT1 (k1) and dissociation from the GLUT1.cytochalasin B complex (k-1) are obtained from the relationship: kobs = k-1 + k1[cytochalasin B]. Low concentrations of maltose, D-glucose, 3-O-methylglucose, and other GLUT1 import-site reactive sugars increase k-1(app) and reduce k1(app) for cytochalasin B interaction with GLUT1. Higher sugar concentrations decrease k1(app) further. The simple carrier mechanism predicts that k1(app) alone is modulated by import- and export-site reactive sugars and is thus incompatible with these findings. These results are consistent with a fixed-site carrier mechanism in which GLUT1 simultaneously presents cooperative sugar import and export sites.  相似文献   

9.
This study investigates the relationship between human erythrocyte glucose transport protein (GLUT1) oligomeric structure and glucose transporter function. Oligomeric structure was analyzed by hydrodynamic studies of cholate-solubilized GLUT1, by chemical cross-linking studies of membrane-resident GLUT1 and by using conformation-specific antibodies. Transporter function (substrate binding) was analyzed by equilibrium cytochalasin B and D-glucose binding measurements. Erythrocyte-resident glucose transporter is a GLUT1 homotetramer, binds 1 mol of cytochalasin B/2 mol of GLUT1, and presents at least two binding sites to D-glucose. Native structure and function appear to be stabilized by intramolecular disulfide bonds and are preserved during GLUT1 purification by the omission of reductant. Native structure is independent of in vitro and in vivo membrane GLUT1 density but is transformed to dimeric GLUT1 by alkaline reduction. Dimeric GLUT1 binds 1 mol of cytochalasin B/mol of GLUT1, presents a single population of binding sites to D-glucose, and is obtained upon GLUT1 purification in the presence of reductant. Native structure and function are restored by treatment of dimeric GLUT1 with glutathione-disulfide (K0.5 glutathione disulfide = 29 microM). We propose that native structure is established prior to transporter translocation to the plasma membrane and that intrasubunit disulfide bonds promote cooperative subunit interactions that stabilize transporter structure and function.  相似文献   

10.
ATP regulation of the human red cell sugar transporter   总被引:4,自引:0,他引:4  
Purified human red blood cell sugar transport protein intrinsic tryptophan fluorescence is quenched by D-glucose and 4,6-ethylidene glucose (sugars that bind to the transport), phloretin and cytochalasin B (transport inhibitors), and ATP. Cytochalasin B-induced quenching is a simple saturable phenomenon with Kd app of 0.15 microM and maximum capacity of 0.85 cytochalasin B binding sites per transporter. Sugar-induced quenching consists of two saturable components characterized by low and high Kd app binding parameters. These binding sites appear to correspond to influx and efflux transport sites, respectively, and coexist within the transporter molecule. ATP-induced quenching is also a simple saturable process with Kd app of 50 microM. Indirect estimates suggest that the ratio of ATP-binding sites per transporter is 0.87:1. ATP reduces the low Kd app and increases the high Kd app for sugar-induced fluorescence quenching. This effect is half-maximal at 45 microM ATP. ATP produces a 4-fold reduction in Km and 2.4-fold reduction in Vmax for cytochalasin B-inhibitable D-glucose efflux from inside-out red cell membrane vesicles (IOVs). This effect on transport is half-maximal at 45 microM ATP. AMP, ADP, alpha, beta-methyleneadenosine 5'-triphosphate, and beta, gamma-methyleneadenosine 5'-triphosphate at 1 mM are without effect on efflux of D-glucose from IOVs. ATP modulation of Km for D-glucose efflux from IOVs is immediate in onset and recovery. ATP inhibition of Vmax for D-glucose exit is complete within 5-15 min and is only partly reversed following 30-min incubation in ATP-free medium. These findings suggest that the human red cell sugar transport protein contains a nucleotide-binding site(s) through which ATP modifies the catalytic properties of the transporter.  相似文献   

11.
The glucose transporter of rat brain was examined by the use of cytochalasin B, a potent inhibitor. The dissociation constants (Kd) of D-glucose-inhibitable cytochalasin B binding in various membrane fractions were about 100 nM. Solubilization and partial purification of glucose transporter were carried out by procedures of DE 52 column chromatography, Bio Gel HT column chromatography and Sepharose CL-6B column chromatography from postnuclear membrane fraction. Purified transporter, reconstituted in lipid vesicles, showed D-glucose-specific transport activity with a Michaelis constant (Km) of 7 mM. The molecular weight was estimated to be about 200K by gel filtration in the presence of 0.1% Triton X-100. The subunit molecular weight was estimated to be 45K by SDS-polyacrylamide gel electrophoresis after photoaffinity labeling using [3H]cytochalasin B as a covalent probe, indicating that rat brain glucose transporter is a tetramer.  相似文献   

12.
GLUT2, the major facilitative glucose transporter isoform expressed in hepatocytes, pancreatic beta-cells, and absorptive epithelial cells, is unique not only with its low affinity and broad substrate specificity as a glucose transporter, but also with its implied function as a glucose-sensor. As a first essential step toward structural and biochemical elucidation of these unique, GLUT2 functions, we describe here the differential solubilization and DEAE-column chromatography of rat hepatocyte GLUT2 protein and its reconstitution into liposomes. The reconstituted GLUT2 bound cytochalasin B in a saturable manner with an apparent dissociation constant (K(d)) of 2.3 x 10(-6) M and a total binding capacity (B(T)) of 8.1 nmol per mg protein. The binding was completely abolished by 2% mercury chloride, but not affected by cytochalasin E. Significantly, the binding was also not affected by 500 mM D-glucose or 3-O-methyl D-glucose (3OMG). The purified GLUT2 catalyzed mercury chloride-sensitive 3OMG uptake, and cytochalasin B inhibited this 3OMG uptake. The inhibition was dose-dependent with respect to cytochalasin B, but was independent of 3OMG concentrations. These findings demonstrate that our solubilized GLUT2 reconstituted in liposomes is at least 60% pure and functional, and that GLUT2 is indeed unique in that its cytochalasin B binding is not affected by its substrate (D-glucose) binding. Our partially purified GLUT2 reconstituted in vesicles will be useful in biochemical and structural elucidation of GLUT2 as a glucose transporter and as a possible glucose sensor.  相似文献   

13.
The human erythrocyte sugar transporter has been labelled at its internal site with cytochalasin B and at its outside site by the azidosalicoyl derivative of bis(D-mannose) (ASA-BMPA). The cleavage of the transporter by various proteinases has been studied. Chymotrypsin, subtilisin and V8 proteinase give parallel fragmentation patterns for the two labels down to fragments as small as 7 kDa. Thus the binding sites for the two labels can only be separated by a small span of protein. 2-Nitro-5-thiocyanobenzoic acid (NTCB) cleaves at cysteines to give a 15 kDa fragment from the two labels. N-Bromosuccinimide (a reagent which preferentially cleaves at tryptophan residues) has revealed differences in fragmentation of the transporter labelled with either cytochalasin B or with ASA-BMPA. A major cleavage site is proposed to occur at tryptophan 186 which leaves a C-terminal fragment containing both labels. A tryptophan cleavage at residue 388 divides the cytochalasin B site and the ASA-BMPA site. A further tryptophan cleavage gives a cytochalasin B labelled 3 kDa fragment probably from residues 388-412. This gives an assignment of the cytochalasin B site as the inside of the hydrophobic span H 10. Since the ASA-BMPA site is probably only 7 kDa from residue 388 and is on the same 15 kDa NTCB fragment as cytochalasin B we assign this to the outside of hydrophobic span H 9. Thermolysin only cleaves the transporter labelled with cytochalasin B and not with ASA-BMPA. A 18 kDa cytochalasin B labelled fragment is formed. This is indicative of a change in conformation of the transporter when an outside ligand is bound such that the inside of the hydrogen bonding transmembrane segments H 7 and H 8 (and containing the proposed thermolysin cleavage site) are withdrawn from the cytosolic surface. Thus it appears that the core of the transporter (including the external and internal sites plus the transmembrane channel) is located between segments H 7 and H 10.  相似文献   

14.
GalP is the membrane protein responsible for H+-driven uptake of D-galactose intoEscherichia coli. It is suggested to be the bacterial equivalent of the mammalian glucose transporter, GLUT1, since these proteins share sequence homology, recognise and transport similar substrates and are both inhibited by cytochalasin B and forskolin. The successful over-production of GalP to 35–55% of the total inner membrane protein ofE. coli has allowed direct physical measurements on isolated membrane preparations. The binding of the antibiotics cytochalasin B and forskolin could be monitored from changes in the inherent fluorescence of GalP, enabling derivation of a kinetic mechanism describing the interaction between the ligands and GalP. The binding of sugars to GalP produces little or no change in the inherent fluorescence of the transporter. However, the binding of transported sugars to GalP produces a large increase in the fluorescence of 8-anilino-1-naphthalene sulphonate (ANS) excited via tryptophan residues. This has allowed a binding step, in addition to two putative translocation steps, to be measured. From all these studies a basic kinetic mechanism for the transport cycle under non-energised conditions has been derived. The ease of genetical manipulation of thegalP gene inE. coli has been exploited to mutate individual amino acid residues that are predicted to play a critical role in transport activity and/or the recognition of substrates and antibiotics. Investigation of these mutant proteins using the fluorescence measurements should elucidate the role of individual residues in the transport cycle as well as refine the current model.Abbreviations GalP galactose-H+ transporter - AraE arabinose-H+ transporter - GLUT1 human erythrocyte glucose transporter requests for offprints: Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2UH, UK  相似文献   

15.
Cytochalasin B was found to bind to at least two distinct sites in human placental microvillous plasma membrane vesicles, one of which is likely to be intimately associated with the glucose transporter. These sites were distinguished by the specificity of agents able to displace bound cytochalasin B. [3H]Cytochalasin B was displaceable at one site by D-glucose but not by dihydrocytochalasin B; it was displaceable from the other by dihydrocytochalasin B but not by D-glucose. Some binding which could not be displaced by D-glucose + cytochalasin B binding site. Cytochalasin B can be photoincorporated into specific binding proteins by ultraviolet irradiation. D-Glucose specifically prevented such photoaffinity labeling of a microvillous protein component(s) of Mr = 60,000 +/- 2000 as determined by urea-sodium dodecyl sulfate acrylamide gel electrophoresis. This D-glucose-sensitive cytochalasin B binding site of the placenta is likely to be either the glucose transporter or be intimately associated with it. The molecular weight of the placental glucose transporter agrees well with the most widely accepted molecular weight for the human erythrocyte glucose transporter. Dihydrocytochalasin B prevented the photoincorporation of [3H]cytochalasin B into a polypeptide(s) of Mr = 53,000 +/- 2000. This component is probably not associated with placental glucose transport. This report presents the first identification of a sodium-independent glucose transporter from a normal human tissue other than the erythrocyte. It also presents the first molecular weight identification of a human glucose-insensitive high-affinity cytochalasin B binding protein.  相似文献   

16.
In this study, we tested the hypothesis that hexose transport regulation may involve proteins with relatively rapid turnover rates. 3T3-L1 adipocytes, which exhibit 10-fold increases in hexose transport rates within 30 min of the addition of 100 nM insulin, were utilized. Exposure of these cells to 300 microM anisomycin or 500 microM cycloheximide caused a maximal, 7-fold increase in 2-deoxyglucose transport rate after 4-8 h. The effects due to either insulin (0.5 h) or anisomycin (5 h) on the kinetics of zero-trans 3-O-methyl[14C]glucose transport were similar, resulting in 2.5-3-fold increases in apparent Vmax values (control Vmax = 1.6 +/- 0.3 x 10(-7) mmol/s/10(6) cells) coupled with approximately 2-fold decreases in apparent Km values (control Km = 23 +/- 3.3 mM). Insulin elicited the expected increases in plasma membrane levels of HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) transporters (1.6- and 2.8-fold, respectively) as determined by protein immunoblotting. In contrast, neither total cellular contents nor plasma membrane levels of these two transporter isoforms were increased when 3T3-L1 adipocytes were treated with either anisomycin or cycloheximide. 3-[125I]Iodo-4-azidophenethylamido-7-O-succinyldeacetylforskoli n labeling of glucose transporters in plasma membrane fractions of similarly treated cells was also unaffected by these agents. Thus, a striking discrepancy was observed between the marked increase in cellular hexose transport rates due to these protein synthesis inhibitors and the unaltered amounts of glucose transporter proteins in the plasma membrane fraction. These data indicate that short-term protein synthesis inhibition in 3T3-L1 adipocytes leads to large increases in the intrinsic catalytic activity of one or both of the GLUT1 and GLUT4 transporter isoforms.  相似文献   

17.
Two cytochalasin B-binding states of the human red blood cell facilitative glucose transporter GLUT1 were studied, one exhibiting one cytochalasin B-binding site on every second GLUT1 monomer (state 1) and the other showing one site per monomer (state 2). Quantitative affinity chromatography of cytochalasin B was performed on (a) biotinylated red blood cells, (b) cytoskeleton-depleted red blood cell membrane vesicles, and (c) GLUT1 proteoliposomes. The cells were adsorbed on streptavidin-derivatized gel beads, and the vesicles and proteoliposomes entrapped in dextran-grafted agarose gel beads. Cytochalasin B binding to free vesicles and proteoliposomes was analyzed by Hummel and Dreyer size-exclusion chromatography and ultracentrifugation. Analysis of the biotinylated cells indicated an equilibrium between the two GLUT1 states. GLUT1 in free membrane vesicles attained state 2, but was converted into state 1 on entrapment of the vesicles. Purification of GLUT1 in the presence of non-ionic detergent followed by reconstitution produced GLUT1 in state 1. This state was maintained after entrapment of the proteoliposomes. Finally, GLUT1 showed slightly higher affinity for cytochalasin B in state 1 than in state 2. In summary, the cytochalasin B-binding state of GLUT1 seemed to be affected by (a) biotinylation of the cell surface, (b) removal of the cytoskeleton at high pH and low ionic strength, (c) interaction between the dextran-grafted agarose gel matrix and the membrane vesicles, and (d) reconstitution to form proteoliposomes.  相似文献   

18.
A new impermeant photoaffinity label has been used for identifying cell surface glucose transporters in isolated rat adipose cells. This compound is 2-N-4(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4- yloxy)-2- propylamine. We have used this reagent in combination with immunoprecipitation by specific antibodies against the GLUT4 and GLUT1 glucose transporter isoforms to estimate the relative abundance of these two transporters on the surface of the intact adipose cell following stimulation by insulin and phorbol 12-myristate 13-acetate (PMA). In the basal state, GLUT4 and GLUT1 are both present at the cell surface but GLUT4 is more abundant than GLUT1. In response to insulin, GLUT4 increases 15-20-fold and GLUT1 increases approximately 5-fold while 3-O-methyl-D-glucose transport is stimulated 20-30-fold. By contrast, PMA only induces a approximately 4-fold increase in GLUT4 while GLUT1 increases approximately 5-fold to the same level as seen with insulin. In addition, PMA stimulates 3-O-methyl-D-glucose transport approximately 3-fold to only 13% of the insulin-stimulated state. Thus GLUT4 is the major glucose transporter isoform under all conditions, and it is selectively and markedly enriched in response to insulin but not PMA which increases GLUT1 and GLUT4 equally. Furthermore, stimulation of glucose transport activity correlates closely with the appearance of GLUT4 on the cell surface in response to both insulin and PMA but does not correlate with the sum of GLUT1 and GLUT4 appearance. These results suggest that GLUT4 may be inherently more active than GLUT1 due to a higher TK (turnover/Km).  相似文献   

19.
Glucose transporter asymmetries in the bovine blood-brain barrier   总被引:5,自引:0,他引:5  
The transport of glucose across the mammalian blood-brain barrier is mediated by the GLUT1 glucose transporter, which is concentrated in the endothelial cells of the cerebral microvessels. Several studies supported an asymmetric distribution of GLUT1 protein between the luminal and abluminal membranes (1:4) with a significant proportion of intracellular transporters. In this study we investigated the activity and concentration of GLUT1 in isolated luminal and abluminal membrane fractions of bovine brain endothelial cells. Glucose transport activity and glucose transporter concentration, as determined by cytochalasin B binding, were 2-fold greater in the luminal than in the abluminal membranes. In contrast, Western blot analysis using a rabbit polyclonal antibody raised against the C-terminal 20 amino acids of GLUT1 indicated a 1:5 luminal:abluminal distribution. Western blot analysis with antibodies raised against either the intracellular loop of GLUT1 or the purified erythrocyte protein exhibited luminal:abluminal ratios of 1:1. A similar ratio was observed when the luminal and abluminal fractions were exposed to the 2-N-4[(3)H](1-azi-2,2,2,-trifluoroethyl)benzoxyl-1,3-bis-(d-mannos-4-yloxyl)-2-propylamine ([(3)H]ATB-BMPA) photoaffinity label. These observations suggest that either an additional glucose transporter isoform is present in the luminal membrane of the bovine blood-brain barrier or the C-terminal epitope of GLUT1 is "masked" in the luminal membrane but not in the abluminal membranes.  相似文献   

20.
The functional consequences of an in vivo heterozygous insertion mutation in the human facilitated glucose transporter isoform 1 (GLUT1) gene were investigated. The resulting frameshift in exon 10 changed the primary structure of the C-terminus from 42 in native GLUT1 to 61 amino acid residues in the mutant. Kinetic studies on a patient's erythrocytes were substantiated by expressing the mutant cDNA in Xenopus laevis oocytes. K(m) and V(max) values were clearly decreased explaining pathogenicity. Targeting to the plasma membrane was comparable between mutant and wild-type GLUT1. Transport inhibition by cytochalasin B was more effective in the mutant than in the wild-type transporter. The substrate specificity of GLUT1 remained unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号