首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate.  相似文献   

2.
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.  相似文献   

3.
Essential Role of hIST1 in Cytokinesis   总被引:1,自引:0,他引:1  
The last steps of multivesicular body (MVB) formation, human immunodeficiency virus (HIV)-1 budding and cytokinesis require a functional endosomal sorting complex required for transport (ESCRT) machinery to facilitate topologically equivalent membrane fission events. Increased sodium tolerance (IST) 1, a new positive modulator of the ESCRT pathway, has been described recently, but an essential function of this highly conserved protein has not been identified. Here, we describe the previously uncharacterized KIAA0174 as the human homologue of IST1 (hIST1), and we report its conserved interaction with VPS4, CHMP1A/B, and LIP5. We also identify a microtubule interacting and transport (MIT) domain interacting motif (MIM) in hIST1 that is necessary for its interaction with VPS4, LIP5 and other MIT domain-containing proteins, namely, MITD1, AMSH, UBPY, and Spastin. Importantly, hIST1 is essential for cytokinesis in mammalian cells but not for HIV-1 budding, thus providing a novel mechanism of functional diversification of the ESCRT machinery. Last, we show that the hIST1 MIM activity is essential for cytokinesis, suggesting possible mechanisms to explain the role of hIST1 in the last step of mammalian cell division.  相似文献   

4.
Disassembly of the endosomal sorting complex required for transport (ESCRT) machinery from biological membranes is a critical final step in cellular processes that require the ESCRT function. This reaction is catalyzed by VPS4, an AAA-ATPase whose activity is tightly regulated by a host of proteins, including LIP5 and the ESCRT-III proteins. Here, we present structural and functional analyses of molecular interactions between human VPS4, LIP5, and the ESCRT-III proteins. The N-terminal domain of LIP5 (LIP5NTD) is required for LIP5-mediated stimulation of VPS4, and the ESCRT-III protein CHMP5 strongly inhibits the stimulation. Both of these observations are distinct from what was previously described for homologous yeast proteins. The crystal structure of LIP5NTD in complex with the MIT (microtubule-interacting and transport)-interacting motifs of CHMP5 and a second ESCRT-III protein, CHMP1B, was determined at 1 Å resolution. It reveals an ESCRT-III binding induced moderate conformational change in LIP5NTD, which results from insertion of a conserved CHMP5 tyrosine residue (Tyr182) at the core of LIP5NTD structure. Mutation of Tyr182 partially relieves the inhibition displayed by CHMP5. Together, these results suggest a novel mechanism of VPS4 regulation in metazoans, where CHMP5 functions as a negative allosteric switch to control LIP5-mediated stimulation of VPS4.  相似文献   

5.
Some intracellular proteins involved in the endosomal sorting complex required for transport (ESCRT) system have microtubule interacting and transport (MIT) domains and bind to ESCRT-III protein family members named charged multivesicular body proteins (CHMPs) at their C-terminal regions containing MIT-interacting motifs (MIMs). While two types of MIMs (MIM1 and MIM2) have been reported, CHMP1B has MIM1 and IST1 has both MIM1 and MIM2. Previously, we demonstrated that CHMP1B and IST1 directly interacted with a tandem repeat of MIT domains of calpain-7 (CL7MIT) and that autolytic activity of calpain-7 was enhanced by IST1 in vitro but not by overexpression of IST1 in HEK293T cells. In this study, we detected enhancement of autolysis of mGFP-fused calpain-7 by coexpression with CHMP1B and observed further activation by additional coexpression of IST1 in HEK293T cells. We found that CL7MIT interacted with the second α-helical region of CHMP1B but not with the canonical C-terminal region containing MIM1 in vitro. Co-immunoprecipitation assays demonstrated that the interaction between CL7MIT and CHMP1B and between CL7MIT and IST1 became stronger when IST1 or CHMP1B was additionally coexpressed, suggesting formation of ternary complex of calpain-7, IST1 and CHMP1B. Moreover, subcellular fractionation analyses revealed increase of calpain-7 in membrane/organelle fractions by concomitant overexpression of these ESCRT-III family member proteins.  相似文献   

6.
In Saccharomyces cerevisiae 6 closely related proteins (Did2p, Vps2p, Vps24p, Vps32p, Vps60p, Vps20p) form part of the extended ESCRT III complex. This complex is required for the formation of multivesicular bodies and the degradation of internalized transmembrane receptor proteins. In contrast the human genome encodes 10 homologous proteins (CHMP1A (approved gene symbol PCOLN3), 1B, 2A, 2B, 3 (approved gene symbol VPS24), 4A, 4B, 4C, 5, and 6). In this study we have performed a series of protein interaction experiments to generate a more comprehensive picture of the human CHMP protein-interaction network. Our results describe novel interactions between known components of the human ESCRT III complex and identify a range of putative binding partners, which may indicate new ways in which the function of human CHMP proteins may be regulated. In particular, we show that two further MIT domain-containing proteins (AMSH/STAMBP and LOC129531) interact with multiple components of the human ESCRT III complex.  相似文献   

7.
Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission.  相似文献   

8.
To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.  相似文献   

9.
Kuang Z  Seo EJ  Leis J 《Journal of virology》2011,85(14):7153-7161
Budding of retroviruses from cell membranes requires ubiquitination of Gag and recruitment of cellular proteins involved in endosome sorting, including endosome sorting complex required for transport III (ESCRT-III) protein complex and vacuolar protein sorting 4 (VPS4) and its ATPase. In response to infection, a cellular mechanism has evolved that blocks virus replication early and late in the budding process through expression of interferon-stimulated gene 15 (ISG15), a dimer homologue of ubiquitin. Interferon treatment of DF-1 cells blocks avian sarcoma/leukosis virus release, demonstrating that this mechanism is functional under physiological conditions. The late block to release is caused in part by a loss in interaction between VPS4 and its coactivator protein LIP5, which is required to promote the formation of the ESCRT III-VPS4 double-hexamer complex to activate its ATPase. ISG15 is conjugated to two different LIP5-ESCRT-III-binding charged multivesicular body proteins, CHMP2A and CHMP5. Upon ISGylation of each, interaction with LIP5 is no longer detected. Two other ESCRT-III proteins, CHMP4B and CHMP6, are also conjugated to ISG15. ISGylation of CHMP2A, CHMP4B, and CHMP6 weakens their binding directly to VPS4, thereby facilitating the release of this protein from the membrane into the cytosol. The remaining budding complex fails to release particles from the cell membrane. Introducing a mutant of ISG15 into cells that cannot be conjugated to proteins prevents the ISG15-dependent mechanism from blocking virus release. CHMP5 is the primary switch to initiate the antiviral mechanism, because removal of CHMP5 from cells prevents ISGylation of CHMP2A and CHMP6.  相似文献   

10.
The AAA+ ATPase VPS4 plays an essential role in multivesicular body biogenesis and is thought to act by disassembling ESCRT-III complexes. VPS4 oligomerization and ATPase activity are promoted by binding to LIP5. LIP5 also binds to the ESCRT-III like protein CHMP5/hVps60, but how this affects its function remains unclear. Here we confirm that LIP5 binds tightly to CHMP5, but also find that it binds well to additional ESCRT-III proteins including CHMP1B, CHMP2A/hVps2-1, and CHMP3/hVps24 but not CHMP4A/hSnf7-1 or CHMP6/hVps20. LIP5 binds to a different region within CHMP5 than within the other ESCRT-III proteins. In CHMP1B and CHMP2A, its binding site encompasses sequences at the proteins' extreme C-termini that overlap with "MIT interacting motifs" (MIMs) known to bind to VPS4. We find unexpected evidence of a second conserved binding site for VPS4 in CHMP2A and CHMP1B, suggesting that LIP5 and VPS4 may bind simultaneously to these proteins despite the overlap in their primary binding sites. Finally, LIP5 binds preferentially to soluble CHMP5 but instead to polymerized CHMP2A, suggesting that the newly defined interactions between LIP5 and ESCRT-III proteins may be regulated by ESCRT-III conformation. These studies point to a role for direct binding between LIP5 and ESCRT-III proteins that is likely to complement LIP5's previously described ability to regulate VPS4 activity.  相似文献   

11.
In eukaryotes, the multivesicular body (MVB) sorting pathway plays an essential role in regulating cell surface protein composition, thereby impacting numerous cellular functions. Vps4, an ATPase associated with a variety of cellular activities, is required late in the MVB sorting reaction to dissociate the endosomal sorting complex required for transport (ESCRT), a requisite for proper function of this pathway. However, regulation of Vps4 function is not understood. We characterize Vta1 as a positive regulator of Vps4 both in vivo and in vitro. Vta1 promotes proper assembly of Vps4 and stimulates its ATPase activity through the conserved Vta1/SBP1/LIP5 region present in Vta1 homologues across evolution, including human SBP1 and Arabidopsis thaliana LIP5. These results suggest an evolutionarily conserved mechanism through which the disassembly of the ESCRT proteins, and thereby MVB sorting, is regulated by the Vta1/SBP1/LIP5 proteins.  相似文献   

12.
The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function.  相似文献   

13.
Structural and mechanistic studies of VPS4 proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
VPS4 ATPases function in multivesicular body formation and in HIV-1 budding. Here, we report the crystal structure of monomeric apo human VPS4B/SKD1 (hVPS4B), which is composed of five distinct elements: a poorly ordered N-terminal MIT domain that binds ESCRT-III substrates, large (mixed alpha/beta) and small (alpha) AAA ATPase domains that closely resemble analogous domains in the p97 D1 ATPase cassette, a three-stranded antiparallel beta domain inserted within the small ATPase domain, and a novel C-terminal helix. Apo hVPS4B and yeast Vps4p (yVps4p) proteins dimerized in solution, and assembled into larger complexes (10-12 subunits) upon ATP binding. Human and yeast adaptor proteins (LIP5 and yVta1p, respectively) bound the beta domains of the fully assembled hVPS4B and yVps4p proteins. We therefore propose that Vps4 proteins cycle between soluble, inactive low molecular weight complexes and active, membrane-associated double-ring structures that bind ATP and coassemble with LIP5/Vta1. Finally, HIV-1 budding was inhibited by mutations in a loop that projects into the center of the modeled hVPS4B rings, suggesting that hVPS4B may release the assembled ESCRT machinery by pulling ESCRT-III substrates up into the central pore.  相似文献   

14.
The ESCRT pathway mediates membrane remodeling during enveloped virus budding, cytokinesis, and intralumenal endosomal vesicle formation. Late in the pathway, a subset of membrane-associated ESCRT-III proteins display terminal amphipathic "MIM1" helices that bind and recruit VPS4 ATPases via their MIT domains. We now report that VPS4 MIT domains also bind a second, "MIM2" motif found in a different subset of ESCRT-III subunits. The solution structure of the VPS4 MIT-CHMP6 MIM2 complex revealed that MIM2 elements bind in extended conformations along the groove between the first and third helices of the MIT domain. Mutations that block VPS4 MIT-MIM2 interactions inhibit VPS4 recruitment, lysosomal protein targeting, and HIV-1 budding. MIT-MIM2 interactions appear to be common throughout the ESCRT pathway and possibly elsewhere, and we suggest how these interactions could contribute to a mechanism in which VPS4 and ESCRT-III proteins function together to constrict the necks of budding vesicles.  相似文献   

15.
During cytokinetic abscission, the endosomal sorting complex required for transport (ESCRT) proteins are recruited to the midbody and direct the severing of the intercellular bridge. In this issue, Christ et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201507009) demonstrate that two separate but redundant pathways exist to recruit ESCRT-III proteins to the midbody.Over the past 140 years, eukaryotic cell division has been extensively studied and is now understood to be an elaborate, tightly regulated set of events that culminates in the formation of two distinct daughter cells. The M phase of animal cells is characterized by a profound structural reorganization, regulated by a cohort of mitotic kinases and performed by mitosis-specific cytoskeletal structures, including the spindle apparatus and the cytokinetic midbody (Scholey et al., 2003). The completion of cytokinesis, called abscission, involves the severing of the intercellular bridge on both sides of the midbody. In 2007, two landmark studies demonstrated that several ESCRT proteins localize to the midbody and are required for the completion of cytokinesis (Carlton and Martin-Serrano, 2007; Morita et al., 2007). Aside from abscission, the ESCRTs participate in the formation of multivesicular endosomes (MVEs), function in plasma membrane repair, and participate in numerous other cellular processes (Katzmann et al., 2002; Morita and Sundquist, 2004; Hurley, 2015).The canonical model for ESCRT function at MVEs involves the hierarchical recruitment of ESCRT proteins in four unique complexes: ESCRT-0 through ESCRT-III. The ESCRTs cluster cargos and deform membrane, and current models suggest that ESCRT-III subunits polymerize to form filaments that spiral down into the neck of a nascent intralumenal vesicle (Schuh and Audhya, 2014). With the assistance of the VPS4 AAA ATPase, ESCRT filaments are remodeled to facilitate vesicle fission (Shen et al., 2014). Though MVE maturation utilizes all four ESCRT complexes, cytokinetic abscission has been previously thought to require only ESCRT-I, ESCRT-III, and the ESCRT-associated ALG2-interacting factor ALIX (Morita et al., 2010). ALIX interacts with both the ESCRT-I protein TSG101 and all three ESCRT-III CHMP4 isoforms and has been postulated to act as an ESCRT-II bypass for linking ESCRT-I and ESCRT-III in abscission (Schuh and Audhya, 2014). However, the precise mechanism underlying the recruitment of the ESCRT-III complex to the midbody during cytokinesis has remained ambiguous.In this issue, Christ et al. address how the ESCRT-III component CHMP4B (Vps32 in other metazoan systems) is recruited to the midbody and demonstrate the necessity of the ESCRT-II complex in this process. They observed that recruitment of CHMP4B to the midbody was abrogated when they codepleted ALIX and the ESCRT-I component TSG101 in cultured HeLa cells, but that CHMP4B did accumulate when only one of these components was depleted. These data indicate that CHMP4B can be recruited to the midbody via TSG101 or ALIX, but that the two proteins are unlikely to perform this function as a complex, suggesting that CHMP4B recruitment to the midbody involves two independent pathways.After immunofluorescence staining of fixed cells, Christ et al. (2016) found that the endogenous ESCRT-III protein CHMP6 and the ESCRT-II protein EAP20 (VPS20 and VPS25 in other systems, respectively) localize to the midbody, consistent with a previous overexpression study (Thoresen et al., 2014). They additionally performed several depletion experiments to establish that ESCRT-II recruits CHMP6 without affecting TSG101 localization, demonstrating that CHMP6 acts downstream of ESCRT-I and ESCRT-II. This shows that ESCRT-I recruits ESCRT-III to the cytokinetic midbody the same way it does at the MVE.Christ et al. (2016) also show that CHMP4B can still be recruited normally when the ESCRT-II component EAP30 (VPS22 in other systems) is depleted, but not when EAP30 is codepleted with ALIX, strongly suggesting that ALIX-dependent accumulation of CHMP4B does not involve CHMP6 and, more generally, that there are two pathways that can each recruit CHMP4B to the midbody: an ESCRT-I–ESCRT-II–CHMP6 pathway and an ALIX-dependent pathway. It will be important for future work to consider the partial redundancy between these two pathways when assaying the dispensability of early acting ESCRT complexes in cellular processes.In addition, Christ et al. (2016) observed that ALIX depletion led to furrow regression and binucleation in dividing cells with chromatin spanning the intercellular bridge, the same phenotype observed in cells expressing a CHMP4C construct lacking the ALIX interaction domain. Further, they showed that CHMP4C localization to the midbody is abrogated after ALIX depletion but is unaffected by TSG101 knockdowns, strongly implicating ALIX in CHMP4C recruitment independently of ESCRT-I.Our overall understanding of the regulation of abscission still remains elementary (Fig. 1). In addition to the roles of the ESCRT machinery, the chromosomal passenger complex (CPC) regulates the timing of cytokinesis and abscission via interactions with the Polo-like kinase PLK1, the mitotic kinesin-like protein MKLP1, and CEP55, a key component of the midbody that associates directly with both ESCRT-I and ALIX (Schuh and Audhya, 2014). One current model is that the CPC promotes the formation of a ternary complex consisting of CHMP4C, ANCHR, and VPS4 and prevents premature action by VPS4 in response to chromatin trapped in the midbody (Thoresen et al., 2014). It has also been suggested that CHMP4C phosphorylation by the enzymatic core of the CPC, the Aurora B kinase, directs CHMP4C localization to the midbody and its retention of VPS4 (Carlton et al., 2012). With the new findings by Christ et al. (2016), the relationship between Aurora B–mediated phosphorylation of CHMP4C and its ability to bind ALIX must now be further explored. Additionally, because ALIX appears to be the primary factor that recruits CHMP4C to the midbody, it may represent a novel therapeutic target for activation or bypass of the NoCut abscission checkpoint.Open in a separate windowFigure 1.Model for the recruitment of CHMP4B and CHMP4C to the midbody and their roles in regulating the timing of abscission. PLK-1 phosphorylation of CEP55 inhibits its binding to MKLP1. At the end of anaphase, PLK1 is degraded and MKLP1 recruits CEP55 to the midbody. CEP55 recruits TSG101 and ALIX to the midbody, and Christ et al. (2016) demonstrate that there are two pathways that lead to the subsequent recruitment of CHMP4B: one through ESCRT-I–ESCRT-II–CHMP6 and the second directly through ALIX. ALIX also recruits CHMP4C, which, upon phosphorylation by the CPC, is hypothesized to form a ternary complex with ANCHR and VPS4. Formation of this complex prevents VPS4 from facilitating the completion of abscission until all chromatin is cleared from the intercellular bridge.In contrast to the necessity of ALIX during cytokinetic abscission, its role during MVE formation and ubiquitin-dependent cargo degradation remains debatable. Depletion studies suggest that ALIX is dispensable for the lysosomal sorting of several cargoes (Bowers et al., 2006). However, ALIX is capable of targeting to late endosomal membranes through its interaction with lysobisphosphatidic acid, and some data suggest that ALIX can promote ESCRT-III filament assembly at MVEs (Matsuo et al., 2004; Pires et al., 2009; Bissig and Gruenberg, 2014). In the future, it will be essential to elucidate the mechanisms by which ALIX and CHMP6 direct the nucleation of CHMP4B/ESCRT-III spiral filaments and to determine whether the membrane landscapes of the MVE and the cytokinetic bridge differ in a manner that promotes one pathway over the other. As cryoelectron microscopy–based approaches in cells and reconstituted systems advance, the answer to these questions may become more accessible.  相似文献   

16.
Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p   总被引:1,自引:0,他引:1  
The type I AAA (ATPase associated with a variety of cellular activities) ATPase Vps4 and its co-factor Vta1p/LIP5 function in membrane remodeling events that accompany cytokinesis, multivesicular body biogenesis, and retrovirus budding, apparently by driving disassembly and recycling of membrane-associated ESCRT (endosomal sorting complex required for transport)-III complexes. Here, we present electron cryomicroscopy reconstructions of dodecameric yeast Vps4p complexes with and without their microtubule interacting and transport (MIT) N-terminal domains and Vta1p co-factors. The ATPase domains of Vps4p form a bowl-like structure composed of stacked hexameric rings. The two rings adopt dramatically different conformations, with the “upper” ring forming an open assembly that defines the sides of the bowl and the lower ring forming a closed assembly that forms the bottom of the bowl. The N-terminal MIT domains of the upper ring localize on the symmetry axis above the cavity of the bowl, and the binding of six extended Vta1p monomers causes additional density to appear both above and below the bowl. The structures suggest models in which Vps4p MIT and Vta1p domains engage ESCRT-III substrates above the bowl and help transfer them into the bowl to be pumped through the center of the dodecameric assembly.  相似文献   

17.
The endosomal sorting complexes required for transport (ESCRTs) impact multiple cellular processes including multivesicular body sorting, abscission, and viral budding. The AAA-ATPase Vps4 is required for ESCRT function, and its full activity is dependent upon the co-factor Vta1. The Vta1 carboxyl-terminal Vta1 SBP1 Lip5 (VSL) domain stimulates Vps4 function by facilitating oligomerization of Vps4 into its active state. Here we report the identification of the Vps4 stimulatory element (VSE) within Vta1 that is required for additional stimulation of Vps4 activity in vitro and in vivo. VSE activity is autoinhibited in a manner dependent upon the unstructured linker region joining the amino-terminal microtubule interacting and trafficking domains and the carboxyl-terminal VSL domain. The VSE is also required for Vta1-mediated Vps4 stimulation by ESCRT-III subunits Vps60 and Did2. These results suggest that ESCRT-III binding to the Vta1 microtubule interacting and trafficking domains relieves linker region autoinhibition of the VSE to produce maximal activation of Vps4 during ESCRT function.  相似文献   

18.
Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II–binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling.  相似文献   

19.
VPS4 proteins are AAA+ ATPases required to form multivesicular bodies, release viral particles, and complete cytokinesis. They act by disassembling ESCRT-III heteropolymers during or after their proposed function in membrane scission. Here we show that purified human VPS4A is essentially inactive but can be stimulated to hydrolyze ATP by ESCRT-III proteins in a reaction that requires both their previously defined MIT interacting motifs and ∼50 amino acids of the adjacent sequence. Importantly, C-terminal fragments of all ESCRT-III proteins tested, including CHMP2A, CHMP1B, CHMP3, CHMP4A, CHMP6, and CHMP5, activated VPS4A suggesting that it disassembles ESCRT-III heteropolymers by affecting each component protein. VPS4A is thought to act as a ring-shaped cylindrical oligomer like other AAA+ ATPases, but this has been difficult to directly demonstrate. We found that concentrating His6-VPS4A on liposomes containing Ni2+-nitrilotriacetic acid-tagged lipid increased ATP hydrolysis, confirming the importance of inter-subunit interactions for activity. We also found that mutating pore loops expected to line the center of a cylindrical oligomer changed the response of VPS4A to ESCRT-III proteins. Based on these data, we propose that ESCRT-III proteins facilitate assembly of functional but transient VPS4A oligomers and interact with sequences inside the pore of the assembled enzyme. Deleting the N-terminal MIT domain and adjacent linker from VPS4A increased both basal and liposome-enhanced ATPase activity, indicating that these elements play a role in autoinhibiting VPS4A until it encounters ESCRT-III proteins. These findings reveal new ways in which VPS4 activity is regulated and specifically directed to ESCRT-III polymers.  相似文献   

20.
The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号