首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties.  相似文献   

2.
The aim of this study was to examine the effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation (LPO) and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver of streptozotocin (STZ)-induced diabetic rats. Twenty-seven rats were randomly divided into three groups: group I, control non-diabetic rats (n = 9); group II, STZ-induced, untreated diabetic rats (n = 8); group III, STZ-induced, CAPE-treated diabetic rats (n = 10), which were intraperitoneally injected with CAPE (10 microM kg(-1) day(-1)) after 3 days followed by STZ treatment. The liver was excised after 8 weeks of CAPE treatment, the levels of malondialdehyde (MDA) and the activities of SOD, CAT, and GSH-Px in the hepatic tissues of all groups were analyzed. In the untreated diabetic rats, MDA markedly increased in the hepatic tissue compared with the control rats (p < 0.0001). However, MDA levels were reduced to the control level by CAPE. The activities of SOD, CAT, and GSH-Px in the untreated diabetic group were higher than that in the control group (p < 0.0001). The activities of SOD and GSH-Px in the CAPE-treated diabetic group were higher than that in the control group (respectively, p < 0.0001, p < 0.035). There were no significant differences in the activity of CAT between the rats of CAPE-treated diabetic and control groups. Rats in the CAPE-treated diabetic group had reduced activities of SOD and CAT in comparison with the rats of untreated diabetic group (p < 0.0001). There were no significant differences in the activity of GSH-Px between the rats of untreated diabetic and CAPE-treated groups. It is likely that STZ-induced diabetes caused liver damage. In addition, LPO may be one of the molecular mechanisms involved in STZ-induced diabetic damage. CAPE can reduce LPO caused by STZ-induced diabetes.  相似文献   

3.
The aim of the present study was to evaluate the copper (Cu), zinc (Zn), malondialdehyde (MDA), glutathione (GSH), and advanced oxidation protein products (AOPP) levels and superoxide dismutase (SOD) activities in diabetic senile cataract. Ten patients with diabetic senile cataract and ten patients with nondiabetic senile cataract (control group) were included in this study. AOPP, MDA, and GSH levels and SOD activity were measured by a spectrophotometric method. Serum, lens Cu, and Zn levels were measured by an atomic absorption spectrophotometric method. Both the lens and serum Zn and Cu levels between the two groups were not significantly different (p > 0.05). GSH, AOPP, and MDA levels and the SOD activities in the diabetic senile cataract group were significantly increased as compared to the control group (p < 0.05). Oxidative stress is one of the major factors which may lead to the early cataract formation. Oxidative events are of great importance in diabetic complications and, particularly in the lens, may have a role in the pathogenesis of cataract associated with diabetes mellitus as exhibited in this study.  相似文献   

4.
This study was designed to investigate whether the short-term extracorporeal shockwave lithotripsy (ESWL) exposure to kidney produces an oxidative stress and a change in some trace element levels in liver and diaphragm muscles of rats. Twelve male Wistar albino rats were divided randomly into two groups, each consisting of six rats. The animals in the first group did not receive any treatment and served as control group. The right-side kidneys of animals in group 2 were treated with two-thousand 18 kV shock waves while anesthetized with 50 mg kg(-1) ketamine. The localization of the right kidney was achieved after contrast medium injection through a tail vein under fluoroscopy control. The animals were killed 72 h after the ESWL treatment, and liver and diaphragm muscles were harvested for the determination of tissue oxidative stress and trace element levels. Although the malondialdehyde level increased, superoxide dismutase and glutathione peroxidase enzyme activities decreased in the livers and diaphragm muscles of ESWL-treated rats. Although glutathione level increased in liver, it decreased in diaphragm muscles of ESWL-treated animals. Fe, Mg and Mn levels decreased, and Cu and Pb levels increased in the livers of ESWL-treated animals. Fe and Cu levels increased, and Mg, Pb, Mn and Zn levels decreased in the diaphragm muscles of ESWL-treated animals. It also causes a decrease or increase in many mineral levels in liver and diaphragm muscles, which is an undesirable condition for the normal physiological function of tissues.  相似文献   

5.
The objective of the study was to investigate the effect of moderate glomerular dysfunction on oxidative stress. We determined the plasma and erythrocyte malondialdehyde (MDA) levels, as a marker of lipid peroxidation, erythrocyte glutathione (GSH) levels and activities of GSH-Px, GSH Red and SOD as an antioxidant enzymes, and plasma trace element levels containing Fe, Cu and Zn in twenty proteinuric patients (6.8 +/- 5.1 g/day) with moderate glomerular function and in 20 anemic control subjects. We found that the erythrocyte and plasma MDA levels and erythrocyte GSH-Px activities were significantly higher (p < 0.001, p < 0.001, p < 0.001, respectively) and the erythrocyte GSH levels and activities of GSH-Red and SOD activities were significantly lower (p < 0.001, p < 0.001, p < 0.001, respectively) in the patients than in the anemic subjects. Plasma Fe and Zn levels were not to be found significantly different in the patients compared to the anemic subjects. But plasma Cu levels were significantly higher in the patients (p < 0.05) when compared with the levels of anemic subjects. This study was concluded that cellular antioxidant activity decreases in proteinuric patients with moderate glomerular function. This may increase lipid peroxidation reactions by causing oxidative stress in erythrocyte membranes.  相似文献   

6.
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Even though Cu is essential to life, it can become toxic to cells, at elevated tissue concentrations. Oxidative damage due to Cu has been reported in recent studies in various tissues. In this study, we aimed to determine the effect of excess Cu on oxidative and anti-oxidative substances in brain tissue in a rat model. Sixteen male Wistar albino rats were divided into two groups: the control group, which was given normal tap water, and the experimental group, which received water containing Cu in a dose of 1 g/l. All rats were sacrificed at the end of 4 wk, under ether anesthesia. Cu concentration in the liver and in plasma alanine aminotransferase (ALT) and aspartate transaminase (AST) activities were determined. There were multiparameter changes with significant ALT and AST activity elevation and increased liver Cu concentration. In brain tissue, Cu concentration, superoxide dismutase (SOD) activities, malondialdehyde (MDA) levels and glutathione (GSH) concentrations were determined. Brain Cu concentration was significantly higher in rats receiving excess Cu, compared with control rats (p < 0.05). Our results showed that SOD activities and GSH levels in brain tissue of the Cu-intoxicated animals were significantly lower than in the control group (p < 0.01 and p < 0,001, respectively). The brain MDA levels were found to be significantly higher in the experimental group than in the control group (p < 0.001). The present results indicate that excessive Cu accumulation in the brain depressed SOD activities and GSH levels and resulted in high MDA levels in brain homogenate due to the lipid peroxidation induced by the Cu overload.  相似文献   

7.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

8.
《Free radical research》2013,47(12):1407-1415
Abstract

Nitration-induced protein damage in the placenta leads to impaired blood flow and deficient feto–placental exchange in diabetic pregnancies. This work studied the effect of nitric oxide and peroxynitrite on Cu/Zn SOD activity in rat placentas and evaluated whether Cu/Zn SOD is nitrated in the placenta from diabetic rats at mid-gestation. Protein nitration was evaluated by EIA, Cu/Zn SOD activity by inhibition of the epinephrine auto-oxidation, Cu/Zn SOD expression by western blot and specific nitration by immunoprecipitation. This study found higher levels of protein nitration (p < 0.001), diminished Cu/Zn SOD activity and enhanced protein expression (p < 0.01) in placentas from diabetic rats. Placental Cu/Zn SOD activity was inhibited by peroxynitrite (p < 0.01). Besides, nitration of Cu/Zn SOD was elevated in placentas from diabetic rats (p < 0.01). These results show that rat Cu/Zn SOD can be nitrated, a modification that could lead to the depressed activity of this enzyme found in placentas from diabetic rats.  相似文献   

9.
Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (n?=?48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10?weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6?weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (p?相似文献   

10.
Since alterations of tryptophan metabolism have been reported in diabetes and atherosclerosis, it was thought of interest to investigate any role of cloricromene through the influence on the oxidative metabolism of the amino acid by using diabetic/hyperlipidemic rabbits.Male 4-month-old New Zealand white rabbits, fed a diet enriched with 1% cholesterol and 10% corn oil, were made diabetic with alloxan. During the hyperlipidemic diet, a group of rabbits was treated with cloricromene (10 mg/kg/day subcutaneously plus 1.5 mg/kg/day intravenously, for 5 weeks). The other group received saline. Normometabolic New Zealand rabbits fed standard diet, treated or not with cloricromene, were used as control.The specific activities of liver tryptophan 2,3-dioxygenase and small intestine indole 2,3-dioxygenase were not significantly changed by the drug treatment. Also the specific activities of other enzymes of the kynurenine pathway in the liver and kidneys, specifically kynurenine 3-monooxygenase, kynureninase and kynurenine-oxoglutarate transaminase, did not show any significant difference in both tissues between the two groups of rabbits. On the contrary, 3-hydroxyanthranilate 3,4-dioxygenase activity in the liver of diabetic/hyperlipidemic rabbits and control rabbits treated with cloricromene showed a slight increase in comparison with untreated animals. Conversely, the specific activity of the enzyme in kidneys was not affected by the drug treatment in diabetic/hyperlipidemic animals but was reduced in controls. Aminocarboxymuconate-semialdehyde decarboxylase specific activity remained unchanged in the liver following cloricromene treatment, instead the specific activity of the enzyme in the kidneys of the diabetic/hyperlipidemic rabbits was significantly increased by the drug, with a value more than double in comparison to untreated animals. The activity of the scavenger enzyme Cu/Zn superoxide dismutase (Cu/Zn SOD) in the small intestine was also determined and found significantly increased of about twice as much in the group of diabetic/hyperlipidemic rabbits treated with cloricromene.In conclusion, in diabetic/hyperlipidemic rabbits, cloricromene appeared to influence the enzymes involved in the last steps of tryptophan oxidative metabolism through the kynurenine pathway. This, together with the antioxidant action through the activation of Cu/Zn SOD, might deserve further investigation for evaluating any link between the observed experimental findings at the level of the kynurenine pathway and the clinical effect of the drug.  相似文献   

11.
The effect of oral zinc (Zn) treatment was studied in the liver, kidneys and intestine of Long-Evans Cinnamon (LEC) rats in relation to metals interaction and concentration of metallothionein (MT) and glutathione (GSH). We also investigated the change in the activity of antioxidant enzymes and determined the biochemical profile in the blood and metal levels in urine. We showed that the Zn-treated group had higher levels of MT in the hepatic and intestinal cells compared to both untreated and basal groups. Tissue Zn concentrations were significantly higher in the Zn-treated group compared to those untreated and basal, whereas Cu and Fe concentrations decreased. The antioxidant enzyme activities in the Zn-treated group did not change significantly with respect to those in the basal group, except for hepatic glutathione peroxidase activity. Moreover, the biochemical data in the blood of Zn-treated group clearly ascertain no liver damage. These observations suggest an important role for Zn in relation not only to its ability to compete with other metals at the level of absorption in the gastrointestinal tract producing a decrease in the hepatic and renal Cu and Fe deposits, but also to MT induction as free radical scavenger.  相似文献   

12.
The present study was designated to assess oxidative damage and its effect on germ cell apoptosis in testes of streptozotocin (STZ)-induced diabetic rats. The role of antioxidant supplementation with a mixture of vitamins E and C and alpha lipoic acid for protection against such damage was also evaluated. Forty-five adult male rats were randomly divided into three groups: group I, control, non-diabetic rats; group II, STZ-induced, untreated diabetic rats; group III, STZ-induced diabetic rats supplemented with a mixture of vitamins E and C and alpha lipoic acid. Glycated hemoglobin (HbA1C), glucose, and insulin levels were estimated in blood samples. Malondialdehyde (MDA), the activities of the enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and caspase-3 in addition to testosterone (T) level were all determined in testicular tissues. Histopathological studies using H&E stain, as well as, immunohistochemical detection of apoptosis using (TUNEL) method were also performed. Blood glucose and HbA1c were significantly increased while insulin was significantly decreased in STZ-induced diabetic rats as compared with controls. In rat testicular tissues, MDA, and caspase-3 activity were significantly elevated while SOD and GPx enzymatic activities as well as T level were significantly decreased in diabetic rats as compared with control group. Antioxidant supplementation to diabetic rats restored the testicular enzymatic activities of SOD and GPx to almost control levels, in addition, MDA and caspase-3 activity decrease while T increase significantly as compared with untreated diabetic group. Prominent reduction of germ cell apoptosis was found in diabetic rats supplemented with antioxidants. An important role of testicular oxidative damage and germ cell apoptosis in diabetes-induced infertility could be suggested, treatment with antioxidants has a protective effect by restoring SOD and GPx antioxidant enzymatic activity.  相似文献   

13.
In this study, it was aimed to demonstrate the possible oxidative stress caused by exposure of xylene and formaldehyde (HCHO) on liver tissue, and on body and liver weights in adult as well as developing rats. The rats (96 female Sprague-Dawley) were randomly divided into four groups: embryonic day 1 (Group 1), 1-day-old infantile rats (Group 2), 4-week-old rats (Group 3) and adult rats (Group 4). The animals were exposed to gases of technical xylene (300 ppm), HCHO (6 ppm) or technical xylene + HCHO (150 ppm + 3 ppm), 8 hours per day for 6 weeks. Superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) and malondialdehyde (MDA) levels were evaluated. In addition, body and liver weights were determinated. Compared to the control animals, body and liver weights were decreased in the embryonic day 1 group (P < 0.001, P < 0.01, respectively) and the 1-day-old infantile group (P < 0.001). Liver weight was increased in the 4-week-old group (P < 0.01). SOD activities were decreased in the 4-week-old rats exposed to HCHO (P < 0.01). CAT activities increased in the embryonic day 1 group (P < 0.05). GSH levels were decreased in the 1-day-old infantile group (P < 0.01), and MDA levels was increased in the embryonic day 1 group (P < 0.05) as compared with the respective control groups. As to GSH and MDA levels in adult and 4-week-old animals, no statistically significant differences were observed (P > 0.05). The present study indicates that exposures to xylene, HCHO and a mixture of them are toxic to liver tissue, and developing female rats are especially more adversely affected. Furthermore, the results of this study show that adult female rats could better tolerate the adverse effects of these toxic gases.  相似文献   

14.
In order to evaluate the effect of diosmin-hesperidin containing drug on redox balance and Cu, Zn, Fe and Mn concentrations of toxin-injured liver, Wistar albino rats were subjected to thioacetamide administration (500 mg TAA/l in their drinking water) with and without drug (425 mg/kg body weight/day). Animals were treated for 30 days. No significant change in the concentration of Zn, Cu, Mn and Fe in the liver was measured in TAA-treated animals compared to control. Diosmin-hesperidin mixture treatment increased levels of Fe and Zn and decreased concentration of Cu of the liver in TAA-treated animals. These alterations were not significant. Decrease of both the total scavenger capacity (TSC) and the activity of superoxide dismutase (SOD) in liver homogenates were observed in TAA-treated rats. The diosmin-hesperidin-supplemented diet also significantly decreased the TSC and activity of SOD in liver of both the control and toxin-treated animals. On the basis of results it seems that high dosage of the diosmin-hesperidin mixture induces slight changes in the Cu, Zn, Mn and Fe content of the liver, however it may decrease the scavenger capacity and the activity of SOD when applied either alone or together with thioacetamide.  相似文献   

15.
The effect of oral zinc (Zn) treatment was studied in the liver, kidneys and intestine of Long–Evans Cinnamon (LEC) rats in relation to metals interaction and concentration of metallothionein (MT) and glutathione (GSH). We also investigated the change in the activity of antioxidant enzymes and determined the biochemical profile in the blood and metal levels in urine. We showed that the Zn-treated group had higher levels of MT in the hepatic and intestinal cells compared to both untreated and basal groups. Tissue Zn concentrations were significantly higher in the Zn-treated group compared to those untreated and basal, whereas Cu and Fe concentrations decreased. The antioxidant enzyme activities in the Zn-treated group did not change significantly with respect to those in the basal group, except for hepatic glutathione peroxidase activity. Moreover, the biochemical data in the blood of Zn-treated group clearly ascertain no liver damage. These observations suggest an important role for Zn in relation not only to its ability to compete with other metals at the level of absorption in the gastrointestinal tract producing a decrease in the hepatic and renal Cu and Fe deposits, but also to MT induction as free radical scavenger.  相似文献   

16.
The effects of oral zinc supplementation on lipid peroxidation and the antioxidant defense system of alloxan (80-90 mg/kg)-induced diabetic rabbits were examined. Forty-five New Zealand male rabbits, 1 year old, weighing approximately 2.5 kg, were allocated randomly and equally as control, diabetic, and zinc-supplemented diabetic groups. After diabetes was induced, zinc-supplemented diabetic rabbits had 150 mg/L of zinc as zinc sulfate (ZnSO(4)) in their drinking tap water for 3 months. The feed and water consumption was higher in diabetic groups than (P<0.01) healthy rabbits. The body weight was lower in diabetic rabbits compared to control. The blood glucose levels were higher in diabetic groups than controls. The elevated plasma malondialdehyde (MDA) levels were determined in the diabetic group (P<0.01). The glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and ceruloplasmin levels in the diabetic group were decreased by the effect of diabetes but there was no difference between zinc-supplemented diabetic and control rabbits. Serum zinc concentrations were lower in diabetic rabbits but iron (Fe) and copper (Cu) levels in sera were not different among the groups. As a result, it was concluded that daily zinc supplementation could reduce the harmful effects of oxidative stress in diabetics.  相似文献   

17.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05?mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

18.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05 mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

19.
黄芩黄酮对硒性白内障晶状体抗氧化酶表达的影响   总被引:9,自引:0,他引:9  
为探讨黄芩黄酮防治白内障的作用机理 ,采用半定量RT PCR方法比较正常组、白内障组和中药防治组大鼠晶状体中GSH Px、GR和Cu ZnSOD的mRNA水平 .白内障组GSH Px、GR和Cu ZnSOD的mRNA水平在 15d龄时显著高于正常 ,然后下降 ;在 2 7d和 31d龄 ,GR和Cu ZnSOD的mRNA水平下降至与正常无显著差异 ,GSH PxmRNA水平仍略高于正常 .中药防治组晶状体中 ,3种抗氧化酶的mRNA水平在各实验取样点无明显变化 ;其中 ,GR和Cu ZnSOD的mRNA水平一直与正常无显著差异 ,GSH PxmRNA水平略高于正常 .黄芩黄酮可能通过有效清除亚硒酸钠间接产生的活性氧来防止白内障的发生 ,并使亚硒酸钠对晶状体抗氧化酶表达的影响得以消除  相似文献   

20.
The aim of this study was to investigate the effect of extracorporeal shock wave lithotripsy (ESWL) on kidney oxidative stress and trace element levels of adult rats. Twelve male Wistar albino rats were divided equally into two groups. First group was used as control. The right-side kidneys of animals in second group were treated with 2,000 18-kV shock waves under anesthesia. Localization of the right kidney was achieved following contrast medium injection through a tail vein under flouroscopy control. The animals were sacrificed 72?h after the ESWL treatment, and the kidneys were taken. Malondialdehyde level was higher in the ESWL group than in the control. Reduced glutathione levels, superoxide dismutase, and glutathione peroxidase activities were lower in the ESWL group than those of the control. Fe, Cu, Pb, Mn, Cd, and Ni levels were lower in the ESWL group than in the control, although Mg level was higher in the ESWL group than in the control. In conclusion, the result of the present study indicated that ESWL treatment produced oxidative stress in the kidney and caused impairments on the antioxidant and trace element levels in the kidneys of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号