首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(10):1462-1476
Reactive oxygen species (ROS) have been implicated as a signal for general autophagy. Both mitochondrial-produced and exogenous ROS induce autophagosome formation. However, it is unclear whether ROS are required for the selective autophagic degradation of mitochondria, a process called mitophagy. Recent work using carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial-uncoupling reagent, has been shown to induce mitophagy. However, CCCP treatment may not be biologically relevant since it causes the depolarization of the entire mitochondrial network. Since mitochondria are the main ROS production sites in mammalian cells, we propose that short bursts of ROS produced within mitochondria may be involved in the signaling for mitophagy. To test this hypothesis, we induced an acute burst of ROS within mitochondria using a mitochondrial-targeted photosensitizer, mitochondrial KillerRed (mtKR). Using mtKR, we increased ROS levels in the mitochondrial matrix, which resulted in the loss of membrane potential and the subsequent activation of PARK2-dependent mitophagy. Importantly, we showed that overexpression of the mitochondrial antioxidant protein, superoxide dismutase-2, can squelch mtKR-induced mitophagy, demonstrating that mitochondrial ROS are responsible for mitophagy activation. Using this assay, we examined the impact of mitochondrial morphology on mitophagy. It was shown recently that elongated mitochondria are more resistant to mitophagy through unknown mechanisms. Here, we show that elongated mitochondria are more resistant to ROS-induced damage and mitophagy compared with fragmented mitochondria, suggesting that mitochondrial morphology has an important role in regulating ROS and mitophagy. Together, our results suggest that ROS-induced mitochondrial damage may be an important upstream activator of mitophagy.  相似文献   

2.
《Autophagy》2013,9(11):1906-1920
CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, we report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both the outer and inner membranes of mitochondria in resting cells. Interestingly, upon induction of mitophagy, CHDH accumulates on the outer membrane in a mitochondrial potential-dependent manner. We found that CHDH is not a substrate of PARK2 but interacts with SQSTM1 independently of PARK2 to recruit SQSTM1 into depolarized mitochondria. The FB1 domain of CHDH is exposed to the cytosol and is required for the interaction with SQSTM1, and overexpression of the FB1 domain only in cytosol reduces CCCP-induced mitochondrial degradation via competitive interaction with SQSTM1. In addition, CHDH, but not the CHDH FB1 deletion mutant, forms a ternary protein complex with SQSTM1 and MAP1LC3 (LC3), leading to loading of LC3 onto the damaged mitochondria via SQSTM1. Further, CHDH is crucial to the mitophagy induced by MPP+ in SN4741 cells. Overall, our results suggest that CHDH is required for PARK2-mediated mitophagy for the recruitment of SQSTM1 and LC3 onto the mitochondria for cargo recognition.  相似文献   

3.
CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, we report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both the outer and inner membranes of mitochondria in resting cells. Interestingly, upon induction of mitophagy, CHDH accumulates on the outer membrane in a mitochondrial potential-dependent manner. We found that CHDH is not a substrate of PARK2 but interacts with SQSTM1 independently of PARK2 to recruit SQSTM1 into depolarized mitochondria. The FB1 domain of CHDH is exposed to the cytosol and is required for the interaction with SQSTM1, and overexpression of the FB1 domain only in cytosol reduces CCCP-induced mitochondrial degradation via competitive interaction with SQSTM1. In addition, CHDH, but not the CHDH FB1 deletion mutant, forms a ternary protein complex with SQSTM1 and MAP1LC3 (LC3), leading to loading of LC3 onto the damaged mitochondria via SQSTM1. Further, CHDH is crucial to the mitophagy induced by MPP+ in SN4741 cells. Overall, our results suggest that CHDH is required for PARK2-mediated mitophagy for the recruitment of SQSTM1 and LC3 onto the mitochondria for cargo recognition.  相似文献   

4.
Mitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane. While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages in the process. Here, we used HeLa cells expressing catalytically active or inactive parkin to perform temporal analysis of the proteome, ubiquitylome, and phosphoproteome during 18 h after induction of mitophagy by mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine. Abundance profiles of proteins downregulated in parkin-dependent manner revealed a stepwise and “outside–in” directed degradation of mitochondrial subcompartments. While ubiquitylation of mitochondrial outer membrane proteins was enriched among early parkin-dependent targets, numerous mitochondrial inner membrane, matrix, and cytosolic proteins were also found ubiquitylated at later stages of mitophagy. Phosphoproteome analysis revealed a possible crosstalk between phosphorylation and ubiquitylation during mitophagy on key parkin targets, such as voltage-dependent anion channel 2.  相似文献   

5.
Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.  相似文献   

6.
Autophagy eliminates dysfunctional mitochondria in an intricate process known as mitophagy. ULK1 is critical for the induction of autophagy, but its substrate(s) and mechanism of action in mitophagy remain unclear. Here, we show that ULK1 is upregulated and translocates to fragmented mitochondria upon mitophagy induction by either hypoxia or mitochondrial uncouplers. At mitochondria, ULK1 interacts with FUNDC1, phosphorylating it at serine 17, which enhances FUNDC1 binding to LC3. A ULK1‐binding‐deficient mutant of FUNDC1 prevents ULK1 translocation to mitochondria and inhibits mitophagy. Finally, kinase‐active ULK1 and a phospho‐mimicking mutant of FUNDC1 rescue mitophagy in ULK1‐null cells. Thus, we conclude that FUNDC1 regulates ULK1 recruitment to damaged mitochondria, where FUNDC1 phosphorylation by ULK1 is crucial for mitophagy.  相似文献   

7.
In this study, we develop a simple assay to identify mitophagy inducers on the basis of the use of fluorescently tagged mitochondria that undergo a colour change on lysosomal delivery. Using this assay, we identify iron chelators as a family of compounds that generate a strong mitophagy response. Iron chelation‐induced mitophagy requires that cells undergo glycolysis, but does not require PINK1 stabilization or Parkin activation, and occurs in primary human fibroblasts as well as those isolated from a Parkinson's patient with Parkin mutations. Thus, we have identified and characterized a mitophagy pathway, the induction of which could prove beneficial as a potential therapy for several neurodegenerative diseases in which mitochondrial clearance is advantageous.  相似文献   

8.
9.
Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPRmt) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.  相似文献   

10.
WX Ding  XM Yin 《Biological chemistry》2012,393(7):547-564
Abstract Mitochondria are essential organelles that regulate cellular energy homeostasis and cell death. The removal of damaged mitochondria through autophagy, a process called mitophagy, is thus critical for maintaining proper cellular functions. Indeed, mitophagy has been recently proposed to play critical roles in terminal differentiation of red blood cells, paternal mitochondrial degradation, neurodegenerative diseases, and ischemia or drug-induced tissue injury. Removal of damaged mitochondria through autophagy requires two steps: induction of general autophagy and priming of damaged mitochondria for selective autophagic recognition. Recent progress in mitophagy studies reveals that mitochondrial priming is mediated either by the Pink1-Parkin signaling pathway or the mitophagic receptors Nix and Bnip3. In this review, we summarize our current knowledge on the mechanisms of mitophagy. We also discuss the pathophysiological roles of mitophagy and current assays used to monitor mitophagy.  相似文献   

11.
Mitochondria serve as membrane sources and signaling platforms for regulating autophagy. Accumulating evidence has also shown that damaged mitochondria are removed through both selective mitophagy and general autophagy in response to mitochondrial and oxidative stresses. Protein ubiquitination through mitochondrial E3 ligases plays an integrative role in mitochondrial outer membrane protein degradation, mitochondrial dynamics, and mitophagy. Here we showed that MUL1, a mitochondria-localized E3 ligase, regulates selenite-induced mitophagy in an ATG5 and ULK1-dependent manner. ULK1 partially translocated to mitochondria after selenite treatment and interacted with MUL1. We also demonstrated that ULK1 is a novel substrate of MUL1. These results suggest the association of mitochondria with autophagy regulation and provide a new mechanism for the beneficial effects of selenium as a chemopreventive agent.  相似文献   

12.
Solid-phase assays play a crucial role today in biological studies. These assays are based on the immobilization of probe molecules on a surface, which are able to capture specifically soluble receptors. In particular, peptide microarrays have emerged as powerful tools in a variety of applications. In this context, optical techniques that allow imaging of nanometer-thick biomolecular films, and thereby the characterization of microarrays, are of great interest. For this purpose, we used a recently disclosed wide-field optical imaging technique of surface nanostructures called Sarfus, which is based on the use of a standard optical microscope and antireflection substrates. We demonstrate here that this technique allows the imaging of the protein layers that result from the specific capture of antibodies by arrayed peptide probes with a spatial resolution of 0.45 microm. The relationship between the thickness of the antibody layer and peptide or antibody concentration was examined.  相似文献   

13.
《Autophagy》2013,9(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

14.
《Autophagy》2013,9(7):1018-1025
Macroautophagy (hereafter referred to as autophagy) has recently emerged as an attractive target for the treatment of various degenerative diseases and cancer. The discovery of effective pharmaceutical regulators of autophagy has, however, been hindered by a lack of feasible assay systems for autophagic flux. Here, we present a luciferase-based reporter assay that measures autophagic flux in real time in living cells and demonstrate that this assay system is apt for the detection of dose- and stimulus-dependent differences in autophagy kinetics. Furthermore, by screening a small molecule kinase inhibitor library containing 80 compounds we identified 12 compounds as inducers of autophagic flux. Importantly, six inhibitors of the class I phosphoinositide 3-kinase – protein kinase B – mammalian target of rapamycin complex 1 axis, the central signaling pathway repressing autophagy, scored as autophagy inducers adequately validating the screen. We conclude that the assay system presented here allows easy and rapid monitoring of autophagy kinetics and is suitable for screening of small molecule libraries.  相似文献   

15.
In cultured cells, not many mitochondria are degraded by mitophagy induced by physiological cellular stress. We observed mitophagy in HeLa cells using a method that relies on the pH-sensitive fluorescent protein Keima. With this approach, we found that mitophagy was barely induced by carbonyl cyanide m-chlorophenyl hydrazone treatment, which is widely used as an inducer of PARK2/Parkin-related mitophagy, whereas a small but modest amount of mitochondria were degraded by mitophagy under conditions of starvation or hypoxia. Mitophagy induced by starvation or hypoxia was marginally suppressed by knockdown of ATG7 and ATG12, or MAP1LC3B, which are essential for conventional macroautophagy. In addition, mitophagy was efficiently induced in Atg5 knockout mouse embryonic fibroblasts. However, knockdown of RAB9A and RAB9B, which are essential for alternative autophagy, but not conventional macroautophagy, severely suppressed mitophagy. Finally, we found that the MAPKs MAPK1/ERK2 and MAPK14/p38 were required for mitophagy. Based on these findings, we conclude that mitophagy in mammalian cells predominantly occurs through an alternative autophagy pathway, requiring the MAPK1 and MAPK14 signaling pathways.  相似文献   

16.
Mitochondria are essential for neuronal survival and function. Proper degradation of aged and damaged mitochondria through mitophagy is a key cellular pathway for mitochondrial quality control. Recent studies have indicated that PINK1/Parkin-mediated pathways ensure mitochondrial integrity and function. Translocation of Parkin to damaged mitochondria induces mitophagy in many nonneuronal cell types. However, evidence showing Parkin translocation in primary neurons is controversial, leaving unanswered questions as to how and where Parkin-mediated mitophagy occurs in neurons. Here, we report the unique process of dissipating mitochondrial Δψ(m)-induced and Parkin-mediated mitophagy in mature cortical neurons. Compared with nonneuronal cells, neuronal mitophagy is a much slower and compartmentally restricted process, coupled with reduced anterograde mitochondrial transport. Parkin-targeted mitochondria are accumulated in the somatodendritic regions where mature lysosomes are predominantly located. Time-lapse imaging shows dynamic formation and elimination of Parkin- and LC3-ring-like structures surrounding depolarized mitochondria through the autophagy-lysosomal pathway in the soma. Knocking down Parkin in neurons impairs the elimination of dysfunctional mitochondria. Thus, our study provides neuronal evidence for dynamic and spatial Parkin-mediated mitophagy, which will help us understand whether altered mitophagy contributes to pathogenesis of several major neurodegenerative diseases characterized by mitochondrial dysfunction and impaired transport.  相似文献   

17.
Cells undergoing apoptosis show a plethora of time-dependent changes. The available tools for imaging apoptosis in live cells rely either on the detection of the activity of caspases, or on the visualization of exposure of phosphatidyl serine in the outer leaflet of the cell membrane. We report here a novel method for the detection of mitochondrial events during apoptosis, namely translocation of Bax to mitochondria and release of cytochrome c (Cyt c) using bimolecular fluorescence complementation. Expression of split yellow fluorescent protein (YFP) fragments fused to Bax and Cyt c, resulted in robust induction of YFP fluorescence at the mitochondria of apoptotic cells with very low background. In vivo expression of split YFP protein fragments in liver hepatocytes and intra-vital imaging of subcutaneous tumor showed elevated YFP fluorescence upon apoptosis induction. Thus, YFP complementation could be applied for high-throughput screening and in vivo molecular imaging of mitochondrial events during apoptosis.  相似文献   

18.
Cai Q  Zakaria HM  Sheng ZH 《Autophagy》2012,8(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

19.
Thomas G. McWilliams 《Autophagy》2016,12(12):2506-2507
The past decade has seen an intensive and concerted research effort into the molecular regulation of mitophagy, the selective autophagy of mitochondria. Cell-based studies have implicated mitophagy in the pathology of diverse conditions ranging from cancer to neurodegeneration. However, a definitive link between mitophagy and the etiology of human disease remains to be demonstrated. Moreover, we do not know how pervasive mammalian mitophagy is in vivo and fundamental questions remain unanswered. For example, is mitophagy common to all tissues under basal conditions or does it only occur in highly oxidative tissues under stress? This paucity of knowledge is largely due to a lack of experimentally tractable tools that can measure and monitor mitophagy in tissues. Our recent work describes the development of mito-QC, a mouse model to study mitophagy at single cell resolution in vivo.  相似文献   

20.
The aim of this study was to delineate the temporal and spatial sequence of STAT1 and STAT3 activation during development of GVHD following fully Major Histocompatibility Complex (MHC)-mismatched allogeneic Bone Marrow Transplantation (BMT). Activation of inflammatory signaling pathways in GVHD target organs was assessed by western blotting, phospho-flow cytometry and electromobility shift assays (EMSA). Development of GVHD was associated with significant expansion of phospho[p]-STAT1 and p-STAT3 expressing CD4+ T cells and CD8+ T cells. GVHD-specific STAT3/STAT1 activation preceded activation of Nuclear Factor-κB (NF-κB) and Mitogen Activated Protein Kinase (MAPK) and was associated with subsequent induction of STAT1 or STAT3-dependent inflammatory gene-expression programs (e.g. expression of IRF-1, SOCS1, IL-17). Our studies may help to establish a functional hierarchy of the signaling events leading to the development of GVHD and could be helpful in designing new molecularly targeted treatment approaches for GVHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号