首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo‐CLEM, the combination of fluorescence cryo‐microscopy (cryo‐FM) permitting for non‐invasive specific multi‐colour labelling, with electron cryo‐microscopy (cryo‐EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence‐based information for guiding cryo‐EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo‐CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano‐environment. However, a major obstacle of cryo‐CLEM currently hindering many biological applications is the large resolution gap between cryo‐FM (typically in the range of ~400 nm) and cryo‐EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super‐resolution cryo‐FM imaging and the correlation with cryo‐EM. This opened the door towards super‐resolution cryo‐CLEM, and thus towards direct correlation of structural details from both imaging modalities.  相似文献   

2.
Cryo‐electron microscopy (cryo‐EM) is a structural biological method that is used to determine the 3D structures of biomacromolecules. After years of development, cryo‐EM has made great achievements, which has led to a revolution in structural biology. In this article, the principle, characteristics, history, current situation, workflow, and common problems of cryo‐EM are systematically reviewed. In addition, the new development direction of cryo‐EM—cryo‐electron tomography (cryo‐ET), is discussed in detail. Also, cryo‐EM is prospected from the following aspects: the structural analysis of small proteins, the improvement of resolution and efficiency, and the relationship between cryo‐EM and drug development. This review is dedicated to giving readers a comprehensive understanding of the development and application of cryo‐EM, and to bringing them new insights.  相似文献   

3.
A procedure for building protein chains into maps produced by single‐particle electron cryo‐microscopy (cryo‐EM) is described. The procedure is similar to the way an experienced structural biologist might analyze a map, focusing first on secondary structure elements such as helices and sheets, then varying the contour level to identify connections between these elements. Since the high density in a map typically follows the main‐chain of the protein, the main‐chain connection between secondary structure elements can often be identified as the unbranched path between them with the highest minimum value along the path. This chain‐tracing procedure is then combined with finding side‐chain positions based on the presence of density extending away from the main path of the chain, allowing generation of a Cα model. The Cα model is converted to an all‐atom model and is refined against the map. We show that this procedure is as effective as other existing methods for interpretation of cryo‐EM maps and that it is considerably faster and produces models with fewer chain breaks than our previous methods that were based on approaches developed for crystallographic maps.  相似文献   

4.
Cryo‐sectioning procedures, initially developed by Tokuyasu, have been successfully improved for tissues and cultured cells, enabling efficient protein localization on the ultrastructural level. Without a standard procedure applicable to any sample, currently existing protocols must be individually modified for each model organism or asymmetric sample. Here, we describe our method that enables reproducible cryo‐sectioning of Caenorhabditis elegans larvae/adults and embryos. We have established a chemical‐fixation procedure in which flat embedding considerably simplifies manipulation and lateral orientation of larvae or adults. To bypass the limitations of chemical fixation, we have improved the hybrid cryo‐immobilization–rehydration technique and reduced the overall time required to complete this procedure. Using our procedures, precise cryo‐sectioning orientation can be combined with good ultrastructural preservation and efficient immuno‐electron microscopy protein localization. Also, GFP fluorescence can be efficiently preserved, permitting a direct correlation of the fluorescent signal and its subcellular localization. Although developed for C. elegans samples, our method addresses the challenge of working with small asymmetric samples in general, and thus could be used to improve the efficiency of immuno‐electron localization in other model organisms.   相似文献   

5.
Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre‐RNA. Using cryo‐electron microscopy (cryo‐EM), we have determined the structure of a yeast cytoplasmic pre‐40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre‐rRNA adopts a highly distorted conformation of its 3′ major and 3′ minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre‐40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre‐40S particle toward the mature form capable of engaging in translation.  相似文献   

6.
The molecular motor kinesin moves along microtubules using energy from ATP hydrolysis in an initial step coupled with ADP release. In neurons, kinesin‐1/KIF5C preferentially binds to the GTP‐state microtubules over GDP‐state microtubules to selectively enter an axon among many processes; however, because the atomic structure of nucleotide‐free KIF5C is unavailable, its molecular mechanism remains unresolved. Here, the crystal structure of nucleotide‐free KIF5C and the cryo‐electron microscopic structure of nucleotide‐free KIF5C complexed with the GTP‐state microtubule are presented. The structures illustrate mutual conformational changes induced by interaction between the GTP‐state microtubule and KIF5C. KIF5C acquires the ‘rigor conformation’, where mobile switches I and II are stabilized through L11 and the initial portion of the neck‐linker, facilitating effective ADP release and the weak‐to‐strong transition of KIF5C microtubule affinity. Conformational changes to tubulin strengthen the longitudinal contacts of the GTP‐state microtubule in a similar manner to GDP‐taxol microtubules. These results and functional analyses provide the molecular mechanism of the preferential binding of KIF5C to GTP‐state microtubules.  相似文献   

7.
The four‐subunit protease complex γ‐secretase cleaves many single‐pass transmembrane (TM) substrates, including Notch and β‐amyloid precursor protein to generate amyloid‐β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx‐defective 1 (APH‐1) and presenilin (PS) exist in two homologous forms APH1‐A and APH1‐B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ‐secretase medicine. Here, we developed the first complete structural model of the APH‐1B subunit using the published cryo‐electron microscopy (cryo‐EM) structures of APH1‐A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all‐atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH‐1B alone and in γ‐secretase without and with substrate C83‐bound. We show that APH‐1B adopts a 7TM topology with a water channel topology similar to APH‐1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo‐EM structures with APH‐1A, however with subtle differences: The substrate‐bound APH‐1B γ‐secretase was quite stable, but some TM helices of PS1 and APH‐1B rearranged in the membrane consistent with the disorder seen in the cryo‐EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH‐1B, that is, it represents a more closed state, due to interactions with the C‐terminal fragment of PS1. Our structural‐dynamic model of APH‐1B alone and in γ‐secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.  相似文献   

8.
Traditionally, structures of cytoskeletal components have been studied ex situ, that is, with biochemically purified materials. There are compelling reasons to develop approaches to study them in situ in their native functional context. In recent years, cryo‐electron tomography emerged as a powerful method for visualizing the molecular organization of unperturbed cellular landscapes with the potential to attain near‐atomic resolution. Here, we review recent works on the cytoskeleton using cryo‐electron tomography, demonstrating the power of in situ studies. We also highlight the potential of this method in addressing important questions pertinent to the field of cytoskeletal biomechanics.  相似文献   

9.
Wenjun Zheng  Frederick Sachs 《Proteins》2017,85(12):2198-2208
The PIEZO channels, a family of mechanosensitive channels in vertebrates, feature a fast activation by mechanical stimuli (eg, membrane tension) followed by a slower inactivation. Although a medium‐resolution structure of the trimeric form of PIEZO1 was solved by cryo‐electron microscopy (cryo‐EM), key structural changes responsible for the channel activation and inactivation are still unknown. Toward decrypting the structural mechanism of the PIEZO1 activation and inactivation, we performed systematic coarse‐grained modeling using an elastic network model and related modeling/analysis tools (ie, normal mode analysis, flexibility and hotspot analysis, correlation analysis, and cryo‐EM‐based hybrid modeling and flexible fitting). We identified four key motional modes that may drive the tension‐induced activation and inactivation, with fast and slow relaxation time, respectively. These modes allosterically couple the lateral and vertical motions of the peripheral domains to the opening and closing of the intra‐cellular vestibule, enabling external mechanical forces to trigger, and regulate the activation/inactivation transitions. We also calculated domain‐specific flexibility profiles, and predicted hotspot residues at key domain‐domain interfaces and hinges. Our results offer unprecedented structural and dynamic information, which is consistent with the literature on mutational and functional studies of the PIEZO channels, and will guide future studies of this important family of mechanosensitive channels.  相似文献   

10.
An increasing number of cryo‐electron microscopy (cryo‐EM) density maps are being generated with suitable resolution to trace the protein backbone and guide sidechain placement. Generating and evaluating atomic models based on such maps would be greatly facilitated by independent validation metrics for assessing the fit of the models to the data. We describe such a metric based on the fit of atomic models with independent test maps from single particle reconstructions not used in model refinement. The metric provides a means to determine the proper balance between the fit to the density and model energy and stereochemistry during refinement, and is likely to be useful in determining values of model building and refinement metaparameters quite generally.  相似文献   

11.
N‐acetylglucosamine 6‐phosphate deacetylase (NagA) catalyzes the conversion of N‐acetylglucosamine‐6‐phosphate to glucosamine‐6‐phosphate in amino sugar catabolism. This conversion is an essential step in the catabolism of sialic acid in several pathogenic bacteria, including Pasteurella multocida, and thus NagA is identified as a potential drug target. Here, we report the unique structural features of NagA from P. multocida (PmNagA) resolved to 1.95 Å. PmNagA displays an altered quaternary architecture with unique interface interactions compared to its close homolog, the Escherichia coli NagA (EcNagA). We confirmed that the altered quaternary structure is not a crystallographic artifact using single particle electron cryo‐microscopy. Analysis of the determined crystal structure reveals a set of hot‐spot residues involved in novel interactions at the dimer‐dimer interface. PmNagA binds to one Zn2+ ion in the active site and demonstrates kinetic parameters comparable to other bacterial homologs. Kinetic studies reveal that at high substrate concentrations (~10‐fold the KM), the tetrameric PmNagA displays hysteresis similar to its distant neighbor, the dimeric Staphylococcus aureus NagA (SaNagA). Our findings provide key information on structural and functional properties of NagA in P. multocida that could be utilized to design novel antibacterials.  相似文献   

12.
Dynamin‐related proteins are multidomain, mechanochemical GTPases that self‐assemble and orchestrate a wide array of cellular processes. Over the past decade, structural insights from X‐ray crystallography and cryo‐electron microscopy have reshaped our mechanistic understanding of these proteins. Here, we provide a historical perspective on these advances that highlights the structural attributes of different dynamin family members and explores how these characteristics affect GTP hydrolysis, conformational coupling and oligomerization. We also discuss a number of lingering challenges remaining in the field that suggest future directions of study.  相似文献   

13.
14.
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane‐associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo‐electron microscopy (cryo‐EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ~20 nm inner diameter and a few microns in length, that self‐assemble in aqueous solutions. The lipid nanodisks (NDs) are self‐assembled discoid lipid bilayers of ~10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane‐associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane‐bound coagulation factor VIII in vitro for structure determination by cryo‐EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three‐dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane‐associated proteins and complexes for structural studies by cryo‐EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane‐associated proteins, such as the coagulation factors, at a close to physiological environment. Proteins 2014; 82:2902–2909. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo‐EM) is now heading off at unprecedented speed towards high‐resolution analysis of biological objects of various sizes. This ‘revolution in resolution’ is happening largely thanks to new developments of new‐generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo‐EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo‐EM in synergy with other methods such as X‐ray crystallography, fluorescence imaging or focussed‐ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi‐scale and multi‐resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.  相似文献   

16.
The COVID‐19 pandemic has triggered numerous scientific activities aimed at understanding the SARS‐CoV‐2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X‐ray, cryo‐EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To help biomedical researchers, who may not necessarily be experts in structural biology, navigate through the flood of structural models, we have created an online resource, covid19.bioreproducibility.org, that aggregates expert‐verified information about SARS‐CoV‐2‐related macromolecular models. In this article, we describe this web resource along with the suite of tools and methodologies used for assessing the structures presented therein.  相似文献   

17.
The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo‐SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of β‐glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo‐SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with β‐glucan depositions on the inside. During germination, arabinoxylan and β‐glucan are hydrolysed, but unlike β‐glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.  相似文献   

18.
Recombinant protein expression systems that produce high yields of pure proteins and multi‐protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X‐ray crystallography and cryo‐electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion‐tag to generate recombinant proteins using suspension‐cultured HEK293F cells. YFP is a dual‐function tag that enables direct visualization and fluorescence‐based selection of high expressing clones for and rapid purification using a high‐stringency, high‐affinity anti‐GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2β catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression.  相似文献   

19.
The molecular chaperone, Hsc70, together with its co‐factor, auxilin, facilitates the ATP‐dependent removal of clathrin during clathrin‐mediated endocytosis in cells. We have used cryo‐electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401‐910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly .  相似文献   

20.
P‐type ATPase proteins maintain cellular homeostasis and uphold critical concentration gradients by ATP‐driven ion transport across biological membranes. Characterization of single‐cycle dynamics by time‐resolved X‐ray scattering techniques in solution could resolve structural intermediates not amendable to for example crystallization or cryo‐electron microscopy sample preparation. To pave way for such time‐resolved experiments, we used biochemical activity measurements, Attenuated Total Reflectance (ATR) and time‐dependent Fourier‐Transform Infra‐Red (FTIR) spectroscopy to identify optimal conditions for activating a Zn2+‐transporting Type‐I ATPase from Shigella sonnei (ssZntA) at high protein concentration using caged ATP. The highest total activity was observed at a protein concentration of 25 mg/mL, at 310 K, pH 7, and required the presence of 20% (v/v) glycerol as stabilizing agent. Neither the presence of caged ATP nor increasing lipid‐to‐protein ratio affected the hydrolysis activity significantly. This work also paves way for characterization of recombinant metal‐transporting (Type‐I) ATPase mutants with medical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号