首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Ffh protein of Escherichia coli is a 48-kDa polypeptide that is homologous to the SRP54 subunit of the eukaryotic signal recognition particle (SRP). Efforts to understand the function of Ffh in bacteria have depended largely on the use of E. coli strains that allow depletion of the wild-type gene product. As an alternative approach to studying Ffh, a temperature-sensitive ffh mutant was isolated. The ffh-10(Ts) mutation results in two amino acid changes in conserved regions of the Ffh protein, and characterization of the mutant revealed that the cells rapidly lose viability at the nonpermissive temperature of 42 degrees C as well as show reduced growth at the permissive temperature of 30 degrees C. While the ffh mutant is defective in insertion of inner membrane proteins, the export of proteins with cleavable signal sequences is not impaired. The mutant also shows elevated expression of heat shock proteins and accumulates insoluble proteins, especially at 42 degrees C. It was further observed that the temperature sensitivity of the ffh mutant was suppressed by overproduction of 4.5S RNA, the RNA component of the bacterial SRP, by stabilizing the thermolabile protein. Collectively, these results are consistent with a model in which Ffh is required only for localization of proteins integral to the cytoplasmic membrane and suggest new genetic approaches to the study of how the structure of the SRP contributes to its function.  相似文献   

2.
A 3.5-kb HindIII DNA fragment containing the secY gene of Bacillus subtilis has been cloned into plasmid pUC13 using the Escherichia coli secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained five open reading frames, and their order in the region, given by the gene product, was suggested to be L30-L15-SecY-Adk-Map by their similarity to the products of the E. coli genes. The region was similar to a part of the spc operon of the E. coli chromosome, although the genes for Adk and Map were not included. The gene product of the B. subtilis secY homologue was composed of 423 amino acids and its molecular weight was calculated to be 46,300. The distribution of hydrophobic amino acids in the gene product suggested that the protein is a membrane integrated protein with ten transmembrane segments. The total deduced amino acid sequence of the B. subtilis SecY homologue shows 41.3% homology with that of E. coli SecY, but remarkably higher homologous regions (more than 80% identity) are present in the four cytoplasmic domains.  相似文献   

3.
A 3.8-kilobase DNA fragment from Bacillus subtilis containing the hemA gene has been cloned and sequenced. Four open reading frames were identified. The first is hemA, encoding a protein of 50.8 kilodaltons. The primary defect of a B. subtilis 5-aminolevulinic acid-requiring mutant was identified as a cysteine-to-tyrosine substitution in the HemA protein. The predicted amino acid sequence of the B. subtilis HemA protein showed 34% identity with the Escherichia coli HemA protein, which is known to code for the NAD(P)H:glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid synthesis. The B. subtilis HemA protein also complements the defect of an E. coli hemA mutant. The second open reading frame in the cloned fragment, called ORF2, codes for a protein of about 30 kilodaltons with unknown function. It is not the proposed hemB gene product porphobilinogen synthase. The third open reading frame is hemC, coding for porphobilinogen deaminase. The fourth open reading frame extends past the sequenced fragment and may be identical to hemD, coding for uroporphyrinogen III cosynthase. Analysis of deletion mutants of the hemA region suggests that (at least) hemA, ORF2, and hemC may be part of an operon.  相似文献   

4.
5.
6.
Genomic DNA encompassing polC, the structural gene specifying Bacillus subtilis DNA polymerase III (PolIII), was sequenced and found to contain a 4311-bp open reading frame (ORF) encoding a 162.4-kDa polypeptide of 1437 amino acids (aa). The ORF was engineered into an Escherichia coli expression plasmid under the control of the coliphage lambda repressor. Derepression of E. coli transformants carrying the recombinant vector resulted in the high-level synthesis of a recombinant DNA polymerase indistinguishable from native PolIII. N-terminal aa sequence analysis of the recombinant polymerase unequivocally identified the 4311-bp ORF as that of polC. Comparative aa sequence analysis indicated significant homology of the B. subtilis enzyme with the catalytic alpha subunit of the E. coli PolIII and, with the exception of an exonuclease domain, little homology with other DNA polymerases. The respective sequences of the mutant polC alleles, dnaF and ts-6, were identified, and the expression of specifically truncated forms of polC was exploited to assess the dependence of polymerase activity on the structure of the enzyme's C terminus.  相似文献   

7.
The 27-kilodalton (kDa) mosquitocidal protein gene from Bacillus thuringiensis subsp. israelensis has been cloned as a 10-kilobase (kb) HindIII fragment from plasmid DNA; efficient expression in Escherichia coli KM1 depends on a region of DNA located approximately 4 kb upstream (K. McLean and H. R. Whiteley, J. Bacteriol. 169:1017-1023, 1987). We have cloned the upstream DNA region and show that it contains a complete open reading frame (ORF) encoding a protein with a molecular mass of 19,584 Da. Sequencing of adjacent stretches of DNA revealed two partial ORFs: one has 55.2% identity in an overlap of 319 amino acids to the putative transposase of IS231 of B. thuringiensis subsp. thuringiensis, and the other, a 78-codon partial ORF, may be the carboxyl terminus of the 67-kDa protein previously observed in maxicells of strain KM1. A 0.8-kb fragment containing only the 20-kDa protein gene greatly enhanced the expression of the 27-kDa protein in E. coli. The introduction of nonsense codons into the 20-kDa protein gene ORF abolished this effect, indicating that the gene product, not the mRNA or DNA, is required for the enhancement. The effect of the 20-kDa protein gene on various fusions of lacZ to the 27-kDa protein gene suggests that the 20-kDa protein acts after the initiation of translation of the 27-kDa protein gene.  相似文献   

8.
A 1.7 kilobase HindIII fragment of Saccharomyces cerevisiae DNA was cloned by cross-hybridization with the Escherichia coli secY gene. The complete nucleotide sequence of the 2.6 kb fragment of the yeast genomic DNA containing the cross-hybridizing HindIII fragment was determined. The sequence showed no apparent similarity with that of the E. coli secY gene with the exception of a completely matched sequence of 21 bp, but it contained a 1,623 nucleotide open reading frame coding for a protein of 541 amino acids with a calculated Mr of 59,600. The N-terminal portion of 303 residues of the predicted sequence was homologous to the cytosolic domain of the alpha-subunit of the signal recognition particle receptor (SR alpha), including consensus sequence elements for a GTP binding site, whereas the C-terminal portion of 238 residues had an unusual methionine-rich domain containing several repetitive sequences. An mRNA of 2.0 kb was detected on Northern blotting analysis. The predicted sequence was 48% identical with the reported sequences of the 54K subunit of the mammalian signal recognition particle (SRP54) (Romisch K. et al. (1989) Nature 340, 478-483; Bernstein, H.D. et al. (1989) Nature 340, 482-486). We designated this gene as SRH1 (SRP54 homologue). Gene disruption experiments showed that the SRH1 gene product is essential for cell growth.  相似文献   

9.
The rnc gene of Bacillus subtilis, which has 36% amino acid identity with the gene that encodes Escherichia coli RNase III endonuclease, was cloned in E. coli and shown by functional assays to encode B. subtilis RNase III (Bs-RNase III). The cloned B. subtilis rnc gene could complement an E. coli rnc strain that is deficient in rRNA processing, suggesting that Bs-RNase III is involved in rRNA processing in B. subtilis. Attempts to construct a B. subtilis rnc null mutant were unsuccessful, but a strain was constructed in which only a carboxy-terminal truncated version of Bs-RNase III was expressed. The truncated Bs-RNase III showed virtually no activity in vitro but was active in vivo. Analysis of expression of a copy of the rnc gene integrated at the amy locus and transcribed from a p(spac) promoter suggested that expression of the B. subtilis rnc is under regulatory control.  相似文献   

10.
《The Journal of cell biology》1989,109(6):3223-3230
We have isolated and sequenced genes from Saccharomyces cerevisiae (SRP54SC) and Schizosaccharomyces pombe (SRP54sp) encoding proteins homologous to both the 54-kD protein subunit (SRP54mam) of the mammalian signal recognition particle (SRP) and the product of a gene of unknown function in Escherichia coli, ffh (Romisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Nature (Lond.). 340:478-482; Bernstein H. D., M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, P. Walter. 1989. Nature (Lond.). 340:482-486). To accomplish this we took advantage of short stretches of conserved sequence between ffh and SRP54mam and used the polymerase chain reaction (PCR) to amplify fragments of the homologous yeast genes. The DNA sequences predict proteins for SRP54sc and SRP54sp that are 47% and 52% identical to SRP54mam, respectively. Like SRP54mam and ffh, both predicted yeast proteins contain a GTP binding consensus sequence in their NH2-terminal half (G-domain), and methionine-rich sequences in their COOH-terminal half (M-domain). In contrast to SRP54mam and ffh the yeast proteins contain additional Met-rich sequences inserted at the COOH-terminal portion of the M-domain. SRP54sp contains a 480- nucleotide intron located 78 nucleotides from the 5' end of the open reading frame. Although the function of the yeast homologues is unknown, gene disruption experiments in S. cerevisiae show that the gene is essential for growth. The identification of SRP54sc and SRP54sp provides the first evidence for SRP related proteins in yeast.  相似文献   

11.
Using the vector pGEM-4-blue, a 4,251-base-pair DNA fragment containing the gene for the surface (S)-layer protein of Bacillus sphaericus 2362 was cloned into Escherichia coli. Determination of the nucleotide sequence indicated an open reading frame (ORF) coding for a protein of 1,176 amino acids with a molecular size of 125 kilodaltons (kDa). A protein of this size which reacted with antibody to the 122-kDa S-layer protein of B. sphaericus was detected in cells of E. coli containing the recombinant plasmid. Analysis of the deduced amino acid sequence indicated a highly hydrophobic N-terminal region which had the characteristics of a leader peptide. The first amino acid of the N-terminal sequence of the 122-kDa S-layer protein followed the predicted cleavage site of the leader peptide in the 125-kDa protein. A sequence characteristic of promoters expressed during vegetative growth was found within a 177-base-pair region upstream from the ORF coding for the 125-kDa protein. This putative promoter may account for the expression of this gene during the vegetative growth of B. sphaericus and E. coli. The gene for the 125-kDa protein was followed by an inverted repeat characteristic of terminators. Downstream from this gene (11.2 kilobases) was an ORF coding for a putative 80-kDa protein having a high sequence similarity to the 125-kDa protein. Evidence was presented indicating that this gene is cryptic.  相似文献   

12.
We have cloned DNA fragments from Bacillus subtilis 168S into Escherichia coli, which produced a lytic zone on an agar medium containing B. subtilis cell wall. Sequencing of the fragments showed the presence of an open reading frame (ORF) which encodes a polypeptide of 272 amino acids with a molecular mass of 29919 Da. The deduced amino acid sequence showed considerable homology with that of the cell wall hydrolase gene of Bacillus sp. (Potvin, C., Leclerc, D., Tremblay, G., Asselin, A. & Bellemare, G. (1988). Molecular and General Genetics 214, 241-248). Accordingly, the gene was designated cwlA, for cell wall lysis. The N-terminal amino acid sequence of cwlA gene product prepared from a E. coli clone was AIKVVKNLVSKSKYGLKCPN, which is consistent with that of the deduced sequence starting from Ala at second position from the initiation codon of the cwlA gene. A presumed sigma A promoter and a rho-independent terminator were found upstream and downstream of the ORF, respectively. A chloramphenicol-resistance determinant integrated into the ORF was mapped by PBS1 transduction, which indicated the gene sequence dnaE-aroD-cwlA.  相似文献   

13.
A 1.8 kb HindIII DNA fragment containing the secY gene of alkalophilic Bacillus sp. C125 has been cloned into plasmid pUC119 using the B. subtilis secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained one complete ORF and parts of two other ORFs. The similarity of these ORFs to the sequences of the B. subtilis proteins indicated that they were the genes for ribosomal protein L15-SecY-adenylate kinase, in that order. The gene product of the alkalophilic Bacillus sp. C125 secY homologue was composed of 431 amino acids and its M(r) value has been calculated to be 47,100. The distribution of hydrophobic amino acids in the gene product suggested that the protein was a membrane integrated protein with ten transmembrane segments. The total amino acid sequence of alkalophilic Bacillus sp. C125 secY homologue showed 69.7% homology with that of B. subtilis secY. Regions of remarkably high homology (78% identity) were present in transmembrane regions, and cytoplasmic domains (73% identity) with less homologous regions present in extracellular domains (43% identity).  相似文献   

14.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

15.
The putative amino acid sequence from the wild-type Bacillus subtilis div+ gene, which complements the temperature-sensitive div-341 mutation, shares a 50% identity with the sequence from Escherichia coli secA (Y. Sadaie, H. Takamatsu, K. Nakamura, and K. Yamane, Gene 98:101-105, 1991). The B. subtilis div-341 mutant accumulated the precursor proteins of alpha-amylase and beta-lactamase at 45 degrees C as in the case of sec mutants of E. coli. The div-341 mutation is a transition mutation causing an amino acid replacement from Pro to Leu at residue 431 of the putative amino acid sequence. The B. subtilis div+ gene was overexpressed in E. coli under the control of the tac promoter, and its product was purified to homogeneity. The Div protein consists of a homodimer of 94-kDa subunits which possesses ATPase activity, and the first 7 amino acids of the putative Div protein were found to be subjected to limited proteolysis in the purified protein. The antiserum against B. subtilis Div weakly cross-reacted with E. coli SecA. On the other hand, B. subtilis Div could not replace E. coli SecA in an E. coli in vitro protein translocation system. The temperature-sensitive growth of the E. coli secA mutant could not be restored by the introduction of B. subtilis div+, which is expressed under the control of the spac-1 promoter, and vice versa. The B. subtilis div+ gene is the B. subtilis counterpart of E. coli secA, and we propose that the div+ gene be referred to as B. subtilis secA, although Div did not function in the protein translocation system of E. coli.  相似文献   

16.
The B. subtilis alpha-amylase promoter and signal peptide are functional in E. coli cells. DNA fragments coding for signal peptides with different lengths (28, 31, 33 and 41 amino acids from the translation initiator Met) were prepared and fused with the E. coli beta-lactamase structural gene. In B. subtilis cells, the sequences of 31, 33 and 41 amino acids were able to secrete beta-lactamase into the surrounding media, but the 28 amino acid sequence was not. In contrast, all of the four sequences were able to export beta-lactamase into the periplasmic space of E. coli cells. Thus, the recognition of the B. subtilis alpha-amylase signal peptide in E. coli cells seems to be different from that in B. subtilis cells.  相似文献   

17.
We cloned and sequenced 8.3 kb of Bacillus subtilis DNA corresponding to the flaA locus involved in flagellar biosynthesis, motility, and chemotaxis. The DNA sequence revealed the presence of 10 complete and 2 incomplete open reading frames. Comparison of the deduced amino acid sequences to data banks showed similarities of nine of the deduced products to a number of proteins of Escherichia coli and Salmonella typhimurium for which a role in flagellar functioning has been directly demonstrated. In particular, the sequence data suggest that the flaA operon codes for the M-ring protein, components of the motor switch, and the distal part of the basal-body rod. The gene order is remarkably similar to that described for region III of the enterobacterial flagellar regulon. One of the open reading frames was translated into a protein with 48% amino acid identity to S. typhimurium FliI and 29% identity to the beta subunit of E. coli ATP synthase.  相似文献   

18.
A previously unreported DNA unwinding enzyme, referred to as the 75-kDa helicase, was recently purified from Escherichia coli cell extracts and biochemically characterized (Wood, E. R., and Matson, S. W. (1987) J. Biol. Chem. 262, 15269-15276). In order to initiate the genetic analysis of the 75-kDa helicase, the gene encoding this enzyme was cloned. DNA sequencing confirmed the identity of the gene since the predicted amino acid sequence of the encoded polypeptide precisely matched the sequence of the first 27 NH2-terminal amino acid residues of the 75-kDa helicase as determined by peptide sequencing. The predicted amino acid sequence of the 75-kDa helicase is similar in several regions to the amino acid sequences of two other E. coli helicases, Rep protein and helicase II. The gene encoding the 75-kDa helicase was mapped to 22 min on the E. coli chromosome. We propose that this newly defined locus be referred to as helD, and, to avoid confusion with other E. coli helicases with a similar molecular size, we propose that the 75-kDa helicase be referred to as helicase IV.  相似文献   

19.
The Bacillus polymyxa CF43 lelA gene, expressing both sucrose and fructan hydrolase activities, was isolated from a genomic library of B. polymyxa screened in Bacillus subtilis. The gene was detected as expressing sucrose hydrolase activity; B. subtilis transformants did not secrete the lelA gene product (LelA) into the extracellular medium. A 1.7-kb DNA fragment sufficient for lelA expression in Escherichia coli was sequenced. It contains a 548-codon open reading frame. The deduced amino acid sequence shows 54% identity with mature B. subtilis levanase and is similar to other fructanases and sucrases (beta-D-fructosyltransferases). Multiple-sequence alignment of 14 of these proteins revealed several previously unreported features. LelA appears to be a 512-amino-acid polypeptide containing no canonical signal peptide. The hydrolytic activities of LelA on sucrose, levan, and inulin were compared with those of B. subtilis levanase and sucrase, confirming that LelA is indeed a fructanase. The lelA gene in the chromosome of B. polymyxa was disrupted with a chloramphenicol resistance gene (cat) by "inter-gramic" conjugation: the lelA::cat insertion on a mobilizable plasmid was transferred from an E. coli transformant to B. polymyxa CF43, and B. polymyxa transconjugants containing the lelA::cat construct replacing the wild-type lelA gene in their chromosomes were selected directly. The growth of the mutant strain on levan, inulin, and sucrose was not affected.  相似文献   

20.
We isolated the gene encoding the alpha subunit of Bacillus subtilis RNA polymerase from a lambda gt11 expression vector library by using anti-alpha antibody as a probe. Four unique clones were isolated, one carrying a lacZ-alpha gene fusion and three carrying the entire alpha coding region together with additional sequences upstream. The identity of the cloned alpha gene was confirmed by the size and immunological reactivity of its product expressed in Escherichia coli. Further, a partial DNA sequence found the predicted NH2 terminus of alpha homologous with E. coli alpha. By plasmid integration and PBS1 transduction, we mapped alpha near rpsE and within the major ribosomal protein gene cluster on the B. subtilis chromosome. Additional DNA sequencing identified rpsM (encoding S13) and rpsK (encoding S11) upstream of alpha, followed by a 180-base-pair intercistronic region that may contain two alpha promoters. Although the organization of the alpha region resembles that of the alpha operon of E. coli, the putative promoters and absence of rpsD (encoding S4) immediately preceding the B. subtilis alpha gene suggest a different regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号