首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that neonatal mice deficient in endothelial nitric oxide synthase (eNOS-/-) are more susceptible to hypoxic inhibition of alveolar and vascular growth. Although eNOS is downregulated, the role of nitric oxide (NO) during recovery after neonatal lung injury is poorly understood. We hypothesized that lung vascular and alveolar growth would remain impaired in eNOS-/- mice during recovery in room air and that NO therapy would augment compensatory lung growth in the eNOS-/- mice during recovery. Mice (1 day old) from heterozygous (eNOS+/-) parents were placed in hypobaric hypoxia (Fi(O2) = 0.16). After 10 days, pups were to recovered in room air (HR group) or inhaled NO (10 parts/million; HiNO group) until 3 wk of age, when lung tissue was collected. Morphometric analysis revealed that the eNOS-/- mice in the HR group had persistently abnormal lung structure compared with eNOS-sufficient (eNOS+/+) mice (increased mean linear intercept and reduced radial alveolar counts, nodal point density, and vessel density). Lung morphology of the eNOS+/- was not different from eNOS+/+. Inhaled NO after neonatal hypoxia stimulated compensatory lung growth in eNOS-/- mice that completely restored normal lung structure. eNOS+/- mice (HR group) had a 2.5-fold increase in lung vascular endothelial growth factor (VEGFR)-2 protein compared with eNOS+/+ (P < 0.05). eNOS-/- mice (HiNO group) had a 66% increase in lung VEGFR-2 protein compared with eNOS-/- (HR group; P < 0.01). We conclude that deficiency of eNOS leads to a persistent failure of lung growth during recovery from neonatal hypoxia and that, after hypoxia, inhaled NO stimulates alveolar and vascular growth in eNOS-/- mice.  相似文献   

2.
Nitric oxide is involved in development and postnatal adaptation of the pulmonary circulation. This study aimed to determine whether genetic deletion of nitric oxide synthase (NOS) would lead to maldevelopment of the pulmonary arteries in fetal life, compromise adaptation to extrauterine life, and be associated with a pulmonary hypertensive phenotype in adult life and if any abnormalities were detected, were they sex dependent. Morphometric analyses were made on lung tissue from male and female fetal, newborn, 14-day-old, and adult endothelial NOS-deficient (eNOS-/-) or inducible NOS-deficient (iNOS-/-) and wild-type mice. Hemodynamic studies were carried out on adult mice with deletion of either eNOS or iNOS genes. We found that in eNOS-/- mice, lung development was normal in fetal, newborn, and adult lungs. Pulmonary arterial muscularity was greater than normal in both male and female eNOS-/- during fetal life and at birth, but the abnormality persisted only in male mice. Right ventricular hypertrophy was present in 14-day-old and adult male eNOS-/- but not in female mice. Adult male eNOS-/- mice had higher mean right ventricular and systemic pressures than female eNOS-/- mice (P < 0.05). Thus deletion of the eNOS gene was associated with structural evidence of pulmonary hypertension in both sexes during fetal life, but pulmonary hypertension persisted only in the male. In neither sex did iNOS or neuronal NOS appear to compensate for the eNOS deletion. Adult iNOS-/- mice did not have structural or hemodynamic evidence of pulmonary hypertension. Possible compensatory mechanisms are discussed.  相似文献   

3.
Lactating female rodents protect their pups by expressing fierce aggression, termed maternal aggression, toward intruders. Mice lacking the neuronal nitric oxide synthase gene (nNOS-/-) exhibit significantly impaired maternal aggression, but increased male aggression, suggesting that nitric oxide (NO) produced by nNOS has opposite actions in maternal and male aggression. In contrast, mice lacking the endothelial nitric oxide synthase gene (eNOS-/-) exhibit almost no male aggression, suggesting that NO produced by eNOS facilitates male aggression. In the present study, maternal aggression in eNOS-/- mice was examined and found to be normal relative to wild-type (WT) mice in terms of the percentage displaying aggression, the average number of attacks against a male intruder, and the total amount of time spent attacking the male intruder. The eNOS-/- females also displayed normal pup retrieval behavior. Because a significant elevation of citrulline, an indirect marker of NO synthesis, occurs in neurons of the hypothalamus of lactating WT mice in association with maternal aggression, we examined the brains of eNOS-/- females for citrulline immunoreactivity following an aggressive encounter. The aggressive eNOS-/- females exhibited a significant elevation of citrulline in the medial preoptic nucleus and the subparaventricular zone of the hypothalamus relative to unstimulated lactating eNOS-/- females. Taken together, these results suggest that NO produced by eNOS neither facilitates nor inhibits maternal aggression and that NO produced by eNOS has a different role in maternal and male aggression.  相似文献   

4.
In addition to its vasodilator properties, nitric oxide (NO) promotes angiogenesis in the systemic circulation and tumors. However, the role of NO in promoting normal lung vascular growth and its impact on alveolarization during development or in response to perinatal stress is unknown. We hypothesized that NO modulates lung vascular and alveolar growth and that decreased NO production impairs distal lung growth in response to mild hypoxia. Litters of 1-day-old mouse pups from parents that were heterozygous for endothelial nitric oxide synthase (eNOS) deficiency were placed in a hypobaric chamber at a simulated altitude of 12,300 ft (Fi(O(2)) = 0.16). After 10 days, the mice were killed, and lungs were fixed for morphometric and molecular analysis. Compared with wild-type controls, mean linear intercept (MLI), which is inversely proportional to alveolar surface area, was increased in the eNOS-deficient (eNOS -/-) mice [51 +/- 2 micro m (eNOS -/-) vs. 41 +/- 1 micro m (wild type); P < 0.01]. MLI was also increased in the eNOS heterozygote (+/-) mice (44 +/- 1 micro m; P < 0.03 vs. wild type). Vascular volume density was decreased in the eNOS -/- mice compared with wild-type controls (P < 0.03). Lung vascular endothelial growth factor (VEGF) protein and VEGF receptor-1 (VEGFR-1) protein content were not different between the study groups. In contrast, lung VEGFR-2 protein content was decreased from control values by 63 and 34% in the eNOS -/- and eNOS +/- mice, respectively (P < 0.03). We conclude that exposure to mild hypoxia during a critical period of lung development impairs alveolarization and reduces vessel density in the eNOS-deficient mouse. We speculate that NO preserves normal distal lung growth during hypoxic stress, perhaps through preservation of VEGFR-2 signaling.  相似文献   

5.
To study the role of endothelial nitric oxide synthase (eNOS) in cardiac function, we compared eNOS expression, contractility, and relaxation in the left ventricles of wild-type and eNOS-deficient mice. eNOS immunostaining is localized to the macro- and microvascular endothelium throughout the myocardium in wild-type mice and is absent in eNOS-/- mice. Whereas blood pressure is elevated in eNOS-/- mice, baseline cardiac contractility (dP/dt(max)) is similar in wild-type and eNOS-/- mice (9,673 +/- 2, 447 and 9,928 +/- 1,566 mmHg/s, respectively). The beta-adrenergic agonist isoproterenol (Iso) at doses of >/=1 ng causes enhanced increases in dP/dt(max) in eNOS-/- mice compared with wild-type controls in vivo (P < 0.01) as well as in Langendorff isolated heart preparations (P < 0.02). beta-Adrenergic receptor binding (B(max)) is not significantly different in the two groups of animals (B(max) = 41.4 +/- 9.4 and 36.1 +/- 5.1 fmol/mg for wild-type and eNOS-/-). Iso-stimulated ventricular relaxation is also enhanced in the eNOS-/- mice, as measured by dP/dt(min) in the isolated heart. However, baseline ventricular relaxation is normal in eNOS-/- mice (tau = 5.2 +/- 1.0 and 5.6 +/- 1.5 ms for wild-type and eNOS-/-, respectively), whereas it is impaired in wild-type mice after NOS inhibition (tau = 8.3 +/- 2.4 ms). cGMP levels in the left ventricle are unaffected by eNOS gene deletion (wild-type: 3.1 +/- 0.8 pmol/mg, eNOS-/-: 3.1 +/- 0.6 pmol/mg), leading us to examine the level of another physiological regulator of cGMP. Atrial natriuretic peptide (ANP) expression is markedly upregulated in the eNOS-/- mice, and exogenous ANP restores ventricular relaxation in wild-type mice treated with NOS inhibitors. These results suggest that eNOS attenuates both inotropic and lusitropic responses to beta-adrenergic stimulation, and it also appears to regulate baseline ventricular relaxation in conjunction with ANP.  相似文献   

6.
One of the main factors that control vasoreactivity and angiogenesis is nitric oxide produced by endothelial nitric oxide synthase (eNOS). We recently showed that knocking out eNOS induces an important reduction of mitochondrial oxidative capacity in slow-twitch skeletal muscle. Here we investigated eNOS's role in physical activity and contribution to adaptation of muscle energy metabolism to exercise conditions. Physical capacity of mice null for the eNOS isoform (eNOS-/-) was estimated for 8 wk with a voluntary wheel-running protocol. In parallel, we studied energy metabolism enzyme profiles and their response to voluntary exercise in cardiac and slow-twitch soleus (Sol) and fast-twitch gastrocnemius (Gast) skeletal muscles. Weekly averaged running distance was two times lower for eNOS-/- (4.09 +/- 0.42 km/day) than for wild-type (WT; 7.74 +/- 0.42 km/day; P < 0.01) mice. Average maximal speed of running was also lower in eNOS-/- (17.2 +/- 1.4 m/min) than WT (21.2 +/- 0.9 m/min; P < 0.01) mice. Voluntary exercise influenced adaptation to exercise specifically in Sol muscle. Physical activity significantly increased Sol weight by 22% (P < 0.05) in WT but not eNOS-/- mice. WT Sol muscle did not change its metabolic profile in response to exercise, in contrast to eNOS-/- muscle, in which physical activity decreased cytochrome-c oxidase (COX; -36%; P < 0.05), citrate synthase (-37%; P < 0.06), and creatine kinase (-24%, P < 0.01) activities. Voluntary exercise did not change energy enzyme profile in heart (except for 39% increase in COX activity in WT) or Gast muscle. These results suggest that eNOS is necessary for maintaining a suitable physical capacity and that when eNOS is downregulated, even moderate exercise could worsen energy metabolism specifically in oxidative skeletal muscle.  相似文献   

7.
Endothelial nitric oxide synthase (eNOS) is essential for neovascularization. Here we show that the impaired neovascularization in mice lacking eNOS is related to a defect in progenitor cell mobilization. Mice deficient in eNOS (Nos3(-/-)) show reduced vascular endothelial growth factor (VEGF)-induced mobilization of endothelial progenitor cells (EPCs) and increased mortality after myelosuppression. Intravenous infusion of wild-type progenitor cells, but not bone marrow transplantation, rescued the defective neovascularization of Nos3(-/-) mice in a model of hind-limb ischemia, suggesting that progenitor mobilization from the bone marrow is impaired in Nos3(-/-) mice. Mechanistically, matrix metalloproteinase-9 (MMP-9), which is required for stem cell mobilization, was reduced in the bone marrow of Nos3(-/-) mice. These findings indicate that eNOS expressed by bone marrow stromal cells influences recruitment of stem and progenitor cells. This may contribute to impaired regeneration processes in ischemic heart disease patients, who are characterized by a reduced systemic NO bioactivity.  相似文献   

8.
The crucial functions of atrial natriuretic peptide (ANP) and endothelial nitric oxide/NO in the regulation of arterial blood pressure have been emphasized by the hypertensive phenotype of mice with systemic inactivation of either the guanylyl cyclase-A receptor for ANP (GC-A-/-) or endothelial nitric-oxide synthase (eNOS-/-). Intriguingly, similar levels of arterial hypertension are accompanied by marked cardiac hypertrophy in GC-A-/-, but not in eNOS-/-, mice, suggesting that changes in local pathways regulating cardiac growth accelerate cardiac hypertrophy in the former and protect the heart of the latter. Our recent observations in mice with conditional, cardiomyocyte-restricted GC-A deletion demonstrated that ANP locally inhibits cardiomyocyte growth. Abolition of these local, protective effects may enhance the cardiac hypertrophic response of GC-A-/- mice to persistent increases in hemodynamic load. Notably, eNOS-/- mice exhibit markedly increased cardiac ANP levels, suggesting that increased activation of cardiac GC-A can prevent hypertensive heart disease. To test this hypothesis, we generated mice with systemic inactivation of eNOS and cardiomyocyte-restricted deletion of GC-A by crossing eNOS-/- and cardiomyocyte-restricted GC-A-deficient mice. Cardiac deletion of GC-A did not affect arterial hypertension but significantly exacerbated cardiac hypertrophy and fibrosis in eNOS-/- mice. This was accompanied by marked cardiac activation of both the mitogen-activated protein kinase (MAPK) ERK 1/2 and the phosphatase calcineurin. Our observations suggest that local ANP/GC-A/cyclic GMP signaling counter-regulates MAPK/ERK- and calcineurin/nuclear factor of activated T cells-dependent pathways of cardiac myocyte growth in hypertensive eNOS-/- mice.  相似文献   

9.
Previous studies suggest that vasoconstriction is modulated by nitric oxide (NO). Contractions to ET-1 and/or thromboxane may be enhanced during chronic deficiency in expression or activity of NO synthase (NOS). Multiple isoforms of NOS are expressed within the vessel wall and purely pharmacological approaches cannot define the role of each. We tested the hypothesis that vasoconstriction to endothelin-1 (ET-1) and/or the thromboxane mimetic, U46619, is enhanced under conditions of chronic, selective deficiency in endothelial NOS (eNOS-/-) by examining responses in aorta from eNOS-/- mice compared to wild type (eNOS+/+). ET-1 produced dose-dependent contraction of aorta from eNOS+/+ mice that was increased twofold following acute inhibition of all NOS isoforms with N(G)-nitro-L-arginine (L-NNA). In eNOS-/- mice, contractions to ET-1 were increased twofold compared to eNOS+/+. L-NNA had no effect. Although contraction of the aorta to thromboxane mimetic U46619 was increased at lower concentrations, maximal contractions to U46619 were not increased following acute inhibition of NOS or in eNOS-/- mice. These studies provide direct evidence that vasoconstriction to ET-1 and thromboxane is augmented in the face of eNOS deficiency, demonstrating that eNOS normally inhibits vascular contractile responses.  相似文献   

10.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.  相似文献   

11.
ADP mediates platelet-induced relaxation of blood vessels and may function as an important intercellular signaling molecule in the brain. We used pharmacological and genetic approaches to examine mechanisms that mediate responses of cerebral arterioles to ADP, including the role of endothelial nitric oxide synthase (eNOS). We examined responses of cerebral arterioles (control diameter approximately 30 microm) in anesthetized wild-type (WT, eNOS+/+) and eNOS-deficient (eNOS-/-) mice using a cranial window. In WT mice, local application of ADP produced vasodilation that was not altered by indomethacin but was reduced by approximately 50% by NG-nitro-L-arginine (L-NNA) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (inhibitors of NOS and soluble guanylate cyclase, respectively). In eNOS-/- mice, responses to ADP were largely preserved, and a significant component of the response was resistant to L-NNA (a finding similar to that in WT mice treated with L-NNA). In the absence of L-NNA, responses to ADP were markedly reduced by charybdotoxin plus apamin [inhibitors of Ca2+-dependent K+ channels and responses mediated by endothelium-derived hyperpolarizing factor (EDHF)] in both WT and eNOS-/- mice. Thus pharmacological and genetic evidence suggests that a significant portion of the response to ADP in cerebral microvessels is mediated by a mechanism independent of eNOS. The eNOS-independent mechanism is functional in the absence of inhibited eNOS and most likely is mediated by an EDHF.  相似文献   

12.
Systemic vasodilation is the initiating event of the hyperdynamic circulatory state, being most likely triggered by increased levels of vasodilators, primarily nitric oxide (NO). Endothelial NO synthase (eNOS) is responsible for this event. We tested the hypothesis that gene deletion of eNOS and inducible NOS (iNOS) may inhibit the development of the hyperdynamic circulatory state in portal hypertensive animals. To test this hypothesis, we used mice lacking eNOS (eNOS-/-) or eNOS/iNOS (eNOS/iNOS-/-) genes. A partial portal vein ligation (PVL) was used to induce portal hypertension. Sham-operated animals were used as a control. Hemodynamic characteristics were tested 2 wk after surgery. As opposed to our hypothesis, PVL also caused significant reduction in peripheral resistance in eNOS-/- compared with sham animals (0.33 +/- 0.02 vs. 0.41 +/- 0.03 mmHg. min x kg body wt x ml(-1); P = 0.04) and in eNOS/iNOS-/- animals with PVL compared with that of the sham-operated group (0.44 +/- 0.02 vs. 0.54 +/- 0.04; P = 0.03). This demonstrates that, despite gene deletion of eNOS, the knockout mice developed hyperdynamic circulation. Compensatory vasodilator molecule(s) are upregulated in place of NO in the systemic and splanchnic circulation in portal hypertensive animals.  相似文献   

13.

Introduction

Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.

Methods and Results

The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.

Conclusions

eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.  相似文献   

14.
Nitric oxide (NO) relaxes the internal anal sphincter (IAS), but its enzymatic source(s) remains unknown; neuronal (nNOS) and endothelial (eNOS) NO synthase (NOS) isoforms could be involved. Also, interstitial cells of Cajal (ICC) may be involved in IAS relaxation. We studied the relative roles of nNOS, eNOS, and c-Kit-expressing ICC for IAS relaxation using genetic murine models. The basal IAS tone and the rectoanal inhibitory reflex (RAIR) were assessed in vivo by a purpose-built solid-state manometric probe and by using wild-type, nNOS-deficient (nNOS-/-), eNOS-deficient (eNOS-/-), and W/W(v) mice (lacking certain c-Kit-expressing ICC) with or without L-arginine or N(omega)-nitro-L-arginine methyl ester (L-NAME) treatment. Moreover, the basal tone and response to electrical field stimulation (EFS) were studied in organ bath using wild-type and mutant IAS. In vivo, the basal tone of eNOS-/- was higher and W/W(v) was lower than wild-type and nNOS-/- mice. L-arginine administered rectally, but not intravenously, decreased the basal tone in wild-type, nNOS-/-, and W/W(v) mice. However, neither L-arginine nor L-NAME affected basal tone in eNOS-/- mice. In vitro, L-arginine decreased basal tone in wild-type and nNOS-/- IAS but not in eNOS-/- or wild-type IAS without mucosa. The in vivo RAIR was intact in wild-type, eNOS-/-, and W/W(v) mice but absent in all nNOS-/- mice. EFS-induced IAS relaxation was also reduced in nNOS-/- IAS. Thus the basal IAS tone is largely controlled by eNOS in the mucosa, whereas the RAIR is controlled by nNOS. c-Kit-expressing ICC may not be essential for the RAIR.  相似文献   

15.
We hypothesized that constitutive endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) have opposite effects on the regulation of endothelin and its receptors. We therefore sought to determine whether deletions of iNOS or eNOS genes in mice modulate pressor responses to endothelin and the expression of ETA and ETB receptors in a similar fashion. Despite unchanged baseline hemodynamic parameters, anesthetized iNOS-/- mice displayed reduced pressor responses to endothelin-1, but not to that of IRL-1620, a selective ETB agonist. Protein content of cardiac ETA receptors was reduced in iNOS-/- mice compared with wild-type mice, but that of ETB receptors was unchanged. Anesthetized eNOS-/- mice presented a hypertensive state, accompanied by an enhanced pressor response to intravenous endothelin-1, whereas the pressor response to IRL-1620 was reduced. Protein levels were also found to be increased for ETA receptors, but reduced for ETB receptors, in cardiac tissues of eNOS-/- mice. In conscious animals, both strains responded equally to the hypotensive effect of an ETA antagonist, ABT-627, whereas orally administered A-192621, an ETB antagonist, increased MAP to a greater extent in eNOS-/- than in wild-type mice. Furthermore, significant levels of immunoreactive endothelin were found in mesenteric arteries in eNOS-/- but not in iNOS-/- or wild-type congeners. Our study shows that repression of iNOS or eNOS has differential effects on endothelin-1 and its receptors. We have also shown that the heart is the main organ in which iNOS or eNOS repression induces important alterations in protein content of endothelin receptors in adult mice.  相似文献   

16.
Two strains of endothelial nitric oxide synthase (eNOS)-deficient (-/-) mice have been developed that respond differently to myocardial ischemia-reperfusion (MI/R). We evaluated both strains of eNOS(-/-) mice in an in vivo model of MI/R. Harvard (Har) eNOS(-/-) mice (n = 12) experienced an 84% increase in myocardial necrosis compared with wild-type controls (P < 0.05). University of North Carolina (UNC) eNOS(-/-) (n = 10) exhibited a 52% reduction in myocardial injury versus wild-type controls (P < 0.05). PCR analysis of myocardial inducible NO synthase (iNOS) mRNA levels revealed a significant (P < 0.05) increase in the UNC eNOS(-/-) mice compared with wild-type mice, and there was no significant difference between the Har eNOS(-/-) and wild-type mice. UNC eNOS(-/-) mice treated with an iNOS inhibitor (1400W) exacerbated the extent of myocardial necrosis. When treated with 1400W, Har eNOS(-/-) did not exhibit a significant increase in myocardial necrosis. These data demonstrate that two distinct strains of eNOS(-/-) mice display opposite responses to MI/R. Although the protection seen in the UNC eNOS(-/-) mouse may result from compensatory increases in iNOS, other genes may be involved.  相似文献   

17.
Nitric oxide (NO) acts as a neuronal messenger in both the central and peripheral nervous systems and has been implicated in reproductive physiology and behavior. Pharmacological inhibition of nitric oxide synthase (NOS) with the nonspecific NOS inhibitor, l-N(G)-nitro-Arg-methyl ester (l-NAME), induced deficits in both the number of ovarian rupture sites and the number of oocytes recovered in the oviducts of mice. Female neuronal NOS knockout (nNOS-/-) mice have normal numbers of rupture sites, but reduced numbers of oocytes recovered following systemic injections of gonadotropins, suggesting that NO produced by nNOS accounts, in part, for deficits in ovulatory efficiency observed after l-NAME administration. Additionally, endothelial NOS knockout (eNOS-/-) mice have reduced numbers of ovulated oocytes after superovulation. Because endothelial NOS has been identified in ovarian follicles, and because of the noted reduced breeding efficiency of eNOS-/- mice, the present study sought to determine the role of NO from eNOS in mediating the number of rupture sites present after ovulation. Estrous cycle length and variability were consistently reduced in eNOS-/- females. The number of rupture sites was normal in eNOS-/- mice under natural conditions and after administration of exogenous GnRH. After exogenous gonadotropin administration, eNOS-/- females displayed a significant reduction in the number of ovarian rupture sites. Female eNOS-/- mice also produced fewer pups/litter compared to WT mice. These data suggest that NO from endothelial sources might play a role in mediating rodent ovulation and may be involved in regulation of the timing of the estrous cycle.  相似文献   

18.
Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test.Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05).Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These data further delineate the modulatory effect of iNOS and nitric oxide in healing skin grafts.  相似文献   

19.
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.  相似文献   

20.
To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号