首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We previously showed that the known HLA-B27-restricted influenza A epitope identified from human studies, NP.383-391, was recognized by CTLs following influenza A infection of transgenic (Tg) HLA-B27/H2 class I-deficient (H2 DKO) mice. Here, we examined the kinetics of the primary NP.383-391-specific response in Tg HLA-B27/H2 DKO mice at the site of respiratory infection, along with the profile of additional influenza A epitopes recognized. While the temporal kinetics of the Tg HLA-B27/NP.383-391-specific CD8+ T cell response paralleled the H2-D(b)/NP.366-374-specific response of non-Tg H2b mice, the magnitude was less. Using epitope prediction programs, we identified three novel B27-restricted influenza A epitopes, PB2.702-710, PB1.571-579, and PB2.368-376, recognized during both the primary and secondary response to infection. Although the secondary NP.383-391-specific response was dominant, PB1.571-579 and PB2.368-376 stimulated stronger proliferative expansion in memory T cells. Our results indicate a broader B27/influenza A CTL repertoire than previously known. Together with results for other HLA class I alleles, this information will become important in improving vaccine strategies for influenza A and other human pathogens.  相似文献   

2.
In a previous report we described how cross-immunizations of pairs of transgenic mice expressing different HLA class I antigens led to the production of antibodies directed exclusively at polymorphic epitopes. This was ascribed to self-tolerance of HLA that prevents immune responses to monomorphic epitopes and focuses responses on polymorphic ones. In the present report we extend our findings and demonstrate that immunizations of class I transgenic mice with HLA transfected mouse fibrosarcoma as well as with human lymphoblastoid cells also preferentially yield antibodies to polymorphic epitopes. This was the case whether or not immunizations were carried out across locus barriers [e.g., Tg (HLA-A *0201) or Tg (HLA-Cw*0301) transgenic mice immunized with HLA-B27 transfectants] or within the same locus [e.g., Tg (HLA-B*1302) transgenic mice immunized with HLA-B27 transfectants or B27-expressing lympho-blastoid cell]. Use of an extended immunization protocol with four or more booster injections favored antibodies of IgG isotype with affinities high enough to lyse normal peripheral blood lymphocytes (PBLs) in complement-dependent cytotoxicity assays and to immunoprecipitate HLA antigens. The specificities covered by the monoclonal antibodies (mAbs) could be either broad or narrow, depending on the genetic distance of the HLA antigens or alleles involved. For instance, a Tg(HLA-B*1302) transgenic mouse immunized with B27 produced both broad B7/B27-specific antibodies, Bw4-specific antibodies, and one antibody reacting with all B alleles except B13 and with some C alleles. On the other hand, a Tg(HLA-B*1302) transgenic mouse immunized with Bw47 transfectants responded narrowly with an antibody to Bw60 and Bw47. Thus it appears that by choosing appropriate recipient mice and closely related or more distant HLA antigens, antibodies of a programmed specificity can be generated. Address correspondence and offprint requests to: U. Hämmerling.  相似文献   

3.
The cytolytic responses of either normal (non transgenic), HLA-B7 (single transgenic) or HLA-B7 x human beta 2 microglobulin (double transgenic) DBA/2 mice induced by transfected HLA-Cw3 P815 (H-2d) mouse mastocytoma cells were compared, to evaluate whether the expression of an HLA class I molecule in responder mice would favor the emergence of HLA-specific, H-2-unrestricted CTL. Only 8 of 300 HLA-Cw3-specific CTL clones tested could selectively lyse HLA-Cw3-transfected cells in an H-2-unrestricted manner, all having been isolated after hyperimmunization of double transgenic mice. These clones also lysed HLA-Cw3+ human cells. Unexpectedly, the lysis of the human but not that of the murine HLA-Cw3 cells was inhibited by Ly-2,3-specific mAb. Despite significant expression of HLA-B7 class I molecules on transgenic lymphoid cells, including thymic cells, limiting dilution analysis and comparative study of TCR-alpha and -beta gene rearrangements of the eight isolated clones (which suggested that they all derived from the same CTL precursor) indicated that the frequency of HLA-Cw3-specific H-2 unrestricted cytotoxic T lymphocytes remained low (even in HLA-B7 x human beta 2-microglobulin double transgenic mice). This suggests that coexpression of HLA class I H and L chain in transgenic mice is not the only requirement for significant positive selection of HLA class I-restricted cytotoxic mouse T lymphocytes.  相似文献   

4.
5.
Long-term syngeneic mouse cytolytic T lymphocyte (CTL) clones were obtained from DBA/2 (H2d) mice immunized with P815 (H2d) cells transfected with cloned human class I histocompatibility genes, HLA-CW3 or HLA-A24. Three distinct patterns of specificity were defined on P815 HLA transfectant target cells. One clone lysed HLA-CW3 but not -A24 transfectants, and a second lysed HLA-A24 but not -CW3 transfectant target cells. The third clone lysed P815 targets transfected with either HLA gene. None of the CTL clones lysed L cells (H2k) transfected with the same HLA genes or human targets that expressed these HLA specificities. Several lines of evidence indicated that recognition of HLA transfectants by these CTL clones was H2 restricted. First, lysis of P815 HLA transfectants could be inhibited by anti-H2Kd monoclonal antibody. In addition, the anti-P815-HLA CTL clones could lyse a (human X mouse) hybrid target that expressed both HLA class I and H2Kd antigens, but not a clonal derivative that no longer expressed H2Kd. The most direct evidence for H2-restricted recognition of P815-HLA transfectants by the syngeneic CTL clones was obtained by double transfection of mouse L cells (H2k) with both HLA and H2 class I genes. L cells transfected with HLA and H2Kd genes were susceptible to lysis by the same CTL clones that lysed the corresponding P815-HLA transfectant targets. Thus under certain conditions, CTL recognition of xenogeneic class I histocompatibility gene products can be restricted by other class I gene products.  相似文献   

6.
We engineered a multiepitope DNA minigene encoding nine dominant HLA-A2.1- and A11-restricted epitopes from the polymerase, envelope, and core proteins of hepatitis B virus and HIV, together with the PADRE (pan-DR epitope) universal Th cell epitope and an endoplasmic reticulum-translocating signal sequence. Immunization of HLA transgenic mice with this construct resulted in: 1) simultaneous CTL induction against all nine CTL epitopes despite their varying MHC binding affinities; 2) CTL responses that were equivalent in magnitude to those induced against a lipopeptide known be immunogenic in humans; 3) induction of memory CTLs up to 4 mo after a single DNA injection; 4) higher epitope-specific CTL responses than immunization with DNA encoding whole protein; and 5) a correlation between the immunogenicity of DNA-encoded epitopes in vivo and the in vitro responses of specific CTL lines against minigene DNA-transfected target cells. Examination of potential variables in minigene construct design revealed that removal of the PADRE Th cell epitope or the signal sequence, and changing the position of selected epitopes, affected the magnitude and frequency of CTL responses. Our results demonstrate the simultaneous induction of broad CTL responses in vivo against multiple dominant HLA-restricted epitopes using a minigene DNA vaccine and underline the utility of HLA transgenic mice in development and optimization of vaccine constructs for human use.  相似文献   

7.
We have introduced the gene (E*01033) encoding the heavy chain of the human nonclassical MHC class I Ag, HLA-E, into the mouse genome. Two founder mice carry a 21-kb fragment, the others bear an 8-kb fragment. Each of the founder mice was mated to mice of an already established C57BL/10 transgenic line expressing human beta2-microglobulin (beta2m). Cell surface HLA-E was detected on lymph node cells by flow cytometry only in the presence of endogenous human beta2m. However, HLA-E-reactive mouse CTL (H-2-unrestricted) lysed efficiently the target cells originating from HLA-E transgenic mice without human beta2m, showing that the HLA-E protein can be transported to the cell surface in the absence of human beta2m, presumably by association with murine beta2m. Rejection of skin grafts from HLA-E transgenic mice demonstrates that HLA-E behaves as a transplantation Ag in mice. HLA-E transgenic spleen cells are effective in stimulating an allogeneic CTL response in normal and human classical class I (HLA-B27) transgenic mice. Furthermore, results from split-well analysis indicate that the majority of the primary in vivo-induced CTL recognizes HLA-E as an intact molecule (H-2-unrestricted recognition) and not as an HLA-E-derived peptide presented by a mouse MHC molecule, although a small fraction (ranging from 4 to 21%) of the primary in vivo-induced CTL is able to recognize HLA-E in an H-2-restricted manner. Based on these observations, we conclude that HLA-E exhibits alloantigenic properties that are indistinguishable from classical HLA class I molecules when expressed in transgenic mice.  相似文献   

8.
Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-K(b) generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-D(b)-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-D(b) DCs were superior to WT-D(b) DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy.  相似文献   

9.
A gene encoding the H chain of the human class I MHC Ag HLA-B27 was introduced into the germ lines of inbred C57BL/6 (B6) and non-inbred (B6 X SJL/J) F2 mice. By immunofluorescence and flow cytometry, the HLA-B27 gene product was expressed on lymphoid cells at levels comparable to the endogenous H-2b and H-2s class I MHC molecules. In both primary and secondary MLC between responder spleen cells from non-transgenic (B6 X SJL/J) F1 mice and transgenic stimulator cells, CTL were generated that specifically lysed mouse L cell (H-2k) or human B cell targets expressing HLA-B27, and this lysis thus appeared largely unrestricted by H-2. These results indicate that transgenic mice express a functional HLA-B27 gene product on cell surfaces in the absence of the human beta 2-microglobulin gene. These transgenic mice promise to be a valuable resource in the investigation of the unique role of HLA-B27 in inflammatory human disease.  相似文献   

10.
HLA-A2.1/K(b) transgenic mice (A2.1/K(b) mice) were used to investigate the processing of human gp100 melanoma antigen by murine antigen presenting cells (APC). Bone marrow-derived dendritic cells (DC) from A2.1/K(b) mice were transduced with adenovirus encoding human gp100 (Ad2/hugp100v2). The Ad2/hugp100v2-transduced DC express human gp100, as documented by immunoperoxidase staining. Flow cytometric analysis demonstrates that Ad vector transduction does not downregulate expression of several markers, including MHC class I. We show that Ad2/hugp100v2-transduced DC are recognized by peptide-specific, A2.1-restricted CTL, suggesting correct processing and presentation of the hugp100 antigen by murine DC. To assess dominance among the various A2.1-restricted epitopes encoded by hugp100, A2.1/K(b) transgenic mice were immunized with Ad2/hugp100v2-transduced DC. Resulting effector cytotoxic T lymphocytes (CTL) were assayed for peptide specificity using a panel of six synthetic peptides known to encode A2.1-restricted epitopes of human gp100 (denoted G154, G177, G209, G280, G457, G476). CTL obtained from Ad2/hugp100v2-transduced DC immunized A2.1/K(b) mouse lysed target cells presenting five of the six epitopes, supporting the observation that murine cells correctly process the hugp100 antigen. The immunogenicity of individual gp100 epitopes correlates with their binding affinity to A2.1. CTL generated from A2.1/K(b) mice immunized with Ad2/hugp100v2-transduced DC also specifically recognize A2.1(+)/gp100(+) human melanoma cells. These data suggest that murine APC process and present the same set of HLA-restricted peptides, similar to human APC. HLA transgenic mice serve as a useful model system to study class I-restricted epitopes of human tumor-associated antigens.  相似文献   

11.
Cytotoxic T lymphocytes (CTLs) are the most powerful weapon of the immune system to eliminate cells infected by intracellular parasites or tumors. However, very often, escape mechanisms overcome CTL immune surveillance by impairing the classical HLA class I antigen-processing pathway. Here, we describe a strategy for CTL activation based on the ability of Tat to mediate transcellular delivery of viral proteins encompassing HLA class I-restricted epitopes. In this system, the recombinant protein TAT-NpFlu containing the transduction domain of Tat of human immunodeficiency virus type 1 fused to the amino acid region 301 to 498 of the nucleoprotein of influenza A virus is proven to sensitize different human cells to lysis by HLA-B27-restricted, Flu 383-391-specific CTL lines. The fusion protein is processed very effectively, since a comparable biological effect is obtained with an amount of protein between 1 and 2 orders of magnitude lower than that of the synthetic peptide. Interestingly, while part of TAT-NpFlu undergoes fast and productive cleavage, a large amount of it remains intact for up to 24 h. Confocal microscopy shows that TAT-NpFlu accumulates in the trans-Golgi network (TGN), where it starts to be detectable 1 h after transduction. Using TAT-NpFlu mutants and hybrid constructs, we demonstrate that enrichment in the TGN occurs only when the carboxy-terminal region of NpFlu (amino acids 400 to 498) is present. These data disclose an unconventional route for presentation of epitopes restricted for HLA class I molecules.  相似文献   

12.
We have introduced the gene encoding the heavy chain of the human MHC class I Ag HLA-B7 into transgenic mice. The gene was shown to be expressed at both the RNA and protein level. Cell surface HLA-B7 was detected on whole spleen cells by immunoprecipitation and on purified T cells by flow cytometry (FACS). Normal mice immunized with H-2-syngeneic B7-transgenic spleen cells generated CTL capable of killing transgenic cells and B7-expressing human JY cells. Anti-HLA mAb blocked the killing of JY cells. These results indicate that the human class I Ag HLA-B7 can be expressed at the surface of transgenic spleen cells in the absence of human beta 2-microglobulin, and that a significant fraction exists in a form recognizable by nontransgenic CTL as a major histocompatibility Ag unrestricted by H-2.  相似文献   

13.
Genetic variation within the HLA-B locus has the strongest impact on HIV disease progression of any polymorphisms within the human genome. However, identifying the exact mechanism involved is complicated by several factors. HLA-Bw4 alleles provide ligands for NK cells and for CD8 T cells, and strong linkage disequilibrium between HLA class I alleles complicates the discrimination of individual HLA allelic effects from those of other HLA and non-HLA alleles on the same haplotype. Here, we exploit an experiment of nature involving two recently diverged HLA alleles, HLA-B*42:01 and HLA-B*42:02, which differ by only a single amino acid. Crucially, they occur primarily on identical HLA class I haplotypes and, as Bw6 alleles, do not act as NK cell ligands and are therefore largely unconfounded by other genetic factors. We show that in an outbred cohort (n = 2,093) of HIV C-clade-infected individuals, a single amino acid change at position 9 of the HLA-B molecule critically affects peptide binding and significantly alters the cytotoxic T lymphocyte (CTL) epitopes targeted, measured directly ex vivo by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay (P = 2 × 10−10) and functionally through CTL escape mutation (P = 2 × 10−8). HLA-B*42:01, which presents multiple Gag epitopes, is associated with a 0.52 log10 lower viral-load set point than HLA-B*42:02 (P = 0.02), which presents no p24 Gag epitopes. The magnitude of this effect from a single amino acid difference in the HLA-A*30:01/B*42/Cw*17:01 haplotype is equivalent to 75% of that of HLA-B*57:03, the most protective HLA class I allele in this population. This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of a particular HIV-specific CTL on disease control.  相似文献   

14.
To identify mAb reacting with the HLA class I alpha 3 domain, 14 mAb recognizing monomorphic determinants expressed on HLA-A, B, and C Ag or restricted to HLA-B Ag were screened in indirect immunofluorescence with mouse L cells expressing HLA-B7/H-2Kb chimeric Ag. mAb CR1S63, CR10-215, CR11-115, and W6/32 were found to react with the HLA class I alpha 3 domain in addition to the alpha 2 domain. mAb Q1/28 and TP25.99 were found to react only with the HLA class I alpha 3 domain. The determinants recognized by the six mAb were mapped on the HLA class I alpha 3 domain by indirect immunofluorescence staining of L cells expressing H-2Kb Ag containing different segments of the HLA-B7 alpha 3 domain chimerized with the H-2Kb alpha 3 domain. mAb TP25.99 reacts with chimeric Ag containing the HLA-B7 184 to 199 stretch, mAb CR10-215 and CR11-115 react with chimeric Ag containing the HLA-B7 184 to 246 stretch, mAb CR1S63 and Q1/28 react with chimeric Ag containing the HLA-B7 184 to 256 stretch, and mAb W6/32 reacts with chimeric Ag containing the whole HLA-B7 alpha 3 domain. Functional analysis using human CD8 alpha-bearing mouse H-2Kb-specific T cell hybridoma cells (HTB-Leu2) showed that only mAb TP25.99 inhibited IL-2 production by HTB-Leu2 cells stimulated with L cells expressing KbKbB7 Ag. This inhibition may occur because of the spatial proximity of the determinant defined by mAb TP25.99 to the CD8 alpha binding loop and/or because of change(s) in the conformation of the CD8 alpha binding loop induced by the binding of mAb TP25.99 to the HLA class I molecule. Furthermore, mAb TP25.99 inhibited the cytotoxicity of CD8-dependent and CD8-independent CTL clones. These results indicate that mAb TP25.99 has unique specificity and functional characteristics. Therefore it represents a valuable probe to characterize the role of the HLA class I alpha 3 domain in immunologic phenomena.  相似文献   

15.
The genetic variations of the HIV-1 virus and its human host constitute major obstacles for obtaining potent HIV-1-specific CTL responses in individuals of diverse ethnic backgrounds infected with different HIV-1 variants. In this study, we developed and used a novel algorithm to select 184 predicted epitopes representing seven different HLA class I supertypes that together constitute a broad coverage of the different HIV-1 strains as well as the human HLA alleles. Of the tested 184 HLA class I-restricted epitopes, 114 were recognized by at least one study subject, and 45 were novel epitopes, not previously described in the HIV-1 immunology database. In addition, we identified 21 "elite" epitopes that induced CTL responses in at least 4 of the 31 patients. A majority (27 of 31) of the study population recognized one or more of these highly immunogenic epitopes. We also found a limited set of 9 epitopes that together induced HIV-1-specific CTL responses in all HIV-1-responsive patients in this study. Our results have important implications for the validation of potent CTL responses and show that the goal for a vaccine candidate in inducing broadly reactive CTL immune responses is attainable.  相似文献   

16.
The minigenes encoding Plasmodium falciparum CTL epitopes restricted to human MHC class I molecular HLA-A2 and HLA-B51, which were both at high frequency among Chinese population, were constructed as mono-epitope CTL vaccines named pcDNA3.1/frand pcDNA3.1/ sh. The minigenes of the two epitopes were then tandem linked to form a dimeric CTL epitope minigene recombinant vaccine. After DNA transfection, the epitope minigenes were expressed respectively in two human cell lines, each bearing one MHC class I molecule named CIR/HLA-A2.1 and K562/HLA-B51. The intraceliular expression of the CTL epitope minigenes not only enhanced the stability of HLA-A2.1 and HLA-B51 molecules but also increased the assemblage of MHC class I molecules on cell surfaces, which testified the specific process and presentation of those endogenous expressed epitopes. For the cells transfected with the dimeric minigene encoding two tandem linked epitopes, the expression and presentation of each epitope were also detected on cell membran  相似文献   

17.
Preferential HLA usage in the influenza virus-specific CTL response   总被引:5,自引:0,他引:5  
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.  相似文献   

18.
Cytotoxic T lymphocytes (CTL) target multiple epitopes in human immunodeficiency virus (HIV)-infected persons, and are thought to influence the viral set point. The extent to which HLA class I allele expression predicts the epitopes targeted has not been determined, nor have the relative contributions of responses restricted by different class I alleles within a given individual. In this study, we performed a detailed analysis of the CTL response to optimally defined CTL epitopes restricted by HLA class I A and B alleles in individuals who coexpressed HLA A2, A3, and B7. The eight HIV-1-infected subjects studied included two subjects with acute HIV infection, five subjects with chronic HIV infection, and one long-term nonprogressor. Responses were heterogeneous with respect to breadth and magnitude of CTL responses in individuals of the same HLA type. Of the 27 tested epitopes that are presented by A2, A3, and B7, 25 were targeted by at least one person. However, there was wide variation in the number of epitopes targeted, ranging from 2 to 17. The A2-restricted CTL response, which has been most extensively studied in infected persons, was found to be narrowly directed in most individuals, and in no cases was it the dominant contributor to the total HIV-1-specific CTL response. These results indicate that HLA type alone does not predict CTL responses and that numerous potential epitopes may not be targeted by CTL in a given individual. These data also provide a rationale for boosting both the breadth and the magnitude of HIV-1-specific CTL responses by immunotherapy in persons with chronic HIV-1 infection.  相似文献   

19.
The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease.  相似文献   

20.
The minigenes encoding Plasmodiumfalciparum CTL epitopes restricted to human MHC class I molecular HLA-A2 and HLA-B51, which were both at high frequency among Chinese population, were constructed as mono-epitope CTL vaccines named pcDNA3.1/tr and pcDNA3.1/sh. The minigenes of the two epitopes were then tandem linked to form a dimeric CTL epitope minigene recombinant vaccine. After DNA transfection, the epitope minigenes were expressed respectively in two human cell lines, each bearing one MHC class I molecule named CIR/HLA-A2.1 and K562/HLA-B51. The intracellular expression of the CTL epitope minigenes not only enhanced the stability of HLA-A2.1 and HLA-B51 molecules but also increased the assemblage of MHC class I molecules on cell surfaces, which testified the specific process and presentation of those endogenous expressed epitopes. For the cells transfected with the dimeric minigene encoding two tandem linked epitopes, the expression and presentation of each epitope were also detected on cell membranes that bore different MHC class I molecules. It meant that the adjacency of the two CTL epitopes did not interfere with the specific process and presentation of each epitope. Compared with the ordinary CTL studies that inoculated synthesized epitope peptides with peripheral blood cells, this work aimed to process the epitopes directly inside HLA class I allele specific human cells, and thus theoretically imitated the same procedurein vivo. It was also an economical way to predict the immunogenicity of CTL epitopes at an early stage especially in laboratories with limited financial resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号