首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(5):656-664
Abstract

The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (EGSSG/2 GSH) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (ECySS/2 Cys). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a ‘thiol–disulphide redox environment’ (Ethiol–disulphide), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of ECySS/2 Cys to Ethiol–disulphide in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.  相似文献   

2.
The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (E(GSSG/2 GSH)) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (E(CySS/2 Cys)). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a 'thiol-disulphide redox environment' (E(thiol-disulphide)), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of E(CySS/2 Cys) to E(thiol-disulphide) in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.  相似文献   

3.
《Free radical research》2013,47(9):1093-1102
Abstract

The half-cell reduction potential of the glutathione disulphide (GSSG)/glutathione (GSH) redox couple appears to correlate with cell viability and has been proposed to be a marker of seed viability and ageing. This study investigated the relationship between seed viability and the individual half-cell reduction potentials (Eis) of four low-molecular-weight (LMW) thiols in Lathyrus pratensis seeds subjected to artificial ageing: GSH, cysteine (Cys), cysteinyl-glycine (Cys-Gly) and γ-glutamyl-cysteine (γ-Glu-Cys). The standard redox potential of γ-Glu-Cys was previously unknown and was experimentally determined. The Eis were mathematically combined to define a LMW thiol-disulphide based redox environment (Ethiol-disulphide). Loss of seed viability correlated with a shift in Ethiol-disulphide towards more positive values, with a LD50 value of ?0.90 ± 0.093 mV M (mean ± SD). The mathematical definition of Ethiol-disulphide is envisaged as a step towards the definition of the overall cellular redox environment, which will need to include all known redox-couples.  相似文献   

4.
Age, sex and diet are well-established risk factors for several diseases. In humans, each of these variables has been linked to differences in plasma redox potentials (Eh) of the glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox couples. Mice have been very useful for modeling human disease processes, but it is unknown if age, sex and diet affect redox couples in mice as they do in humans. The purpose of the present study was to examine the effects of these factors on plasma redox potentials in C57BL/6J mice. We found that age had no effect on either redox couple in either sex. Plasma Eh Cys/CySS and Eh GSH/GSSG were both more oxidized (more positive) in females than in males. A 24-hour fast negated the sex differences in both redox potentials by oxidizing both redox couples in male mice, while having no effect on Eh Cys/CySS and a smaller effect on Eh GSH/GSSG in female mice. A diet with excess sulfur amino acids reduced the plasma Eh Cys/CySS in females to a level comparable to that seen in male mice. Thus, sex-specific differences in plasma Eh Cys/CySS could be normalized by two different dietary interventions. Some of these findings are consistent with reported human studies, while others are not. Most strikingly, mice do not exhibit age-dependent oxidation of plasma redox potentials. Care must be taken when designing and interpreting mouse studies to investigate redox regulation in humans.  相似文献   

5.
The half-cell reduction potential of the glutathione disulphide (GSSG)/glutathione (GSH) redox couple appears to correlate with cell viability and has been proposed to be a marker of seed viability and ageing. This study investigated the relationship between seed viability and the individual half-cell reduction potentials (E(i)s) of four low-molecular-weight (LMW) thiols in Lathyrus pratensis seeds subjected to artificial ageing: GSH, cysteine (Cys), cysteinyl-glycine (Cys-Gly) and γ-glutamyl-cysteine (γ-Glu-Cys). The standard redox potential of γ-Glu-Cys was previously unknown and was experimentally determined. The E(i)s were mathematically combined to define a LMW thiol-disulphide based redox environment (E(thiol-disulphide)). Loss of seed viability correlated with a shift in E(thiol-disulphide) towards more positive values, with a LD(50) value of -0.90 ± 0.093 mV M (mean ± SD). The mathematical definition of E(thiol-disulphide) is envisaged as a step towards the definition of the overall cellular redox environment, which will need to include all known redox-couples.  相似文献   

6.
The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.  相似文献   

7.
Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.  相似文献   

8.
To elucidate biochemical mechanisms leading to seed deterioration, we studied 23 wheat genotypes after exposure to seed bank storage for 6–16 years compared to controlled deterioration (CD) at 45?°C and 14 (CD14) and 18% (CD18) moisture content (MC) for up to 32 days. Under two seed bank storage conditions, seed viability was maintained in cold storage (CS) at 0?°C and 9% seed MC, but significantly decreased in ambient storage (AS) at 20?°C and 9% MC. Under AS and CS, organic free radicals, most likely semiquinones, accumulated, detected by electron paramagnetic resonance, while the antioxidant glutathione (GSH) was partly lost and partly converted to glutathione disulphide (GSSG), detected by HPLC. Under AS the glutathione half-cell reduction potential (EGSSG/2GSH) shifted towards more oxidising conditions, from ?186 to ?141?mV. In seeds exposed to CD14 or CD18, no accumulation of organic free radicals was observed, GSH and seed viability declined within 32 and 7 days, respectively, GSSG hardly changed (CD14) or decreased (CD18) and EGSSG/2GSH shifted to ?116?mV. The pH of extracts prepared from seeds subjected to CS, AS and CD14 decreased with viability, and remained high under CD18. Across all treatments, EGSSG/2GSH correlated significantly with seed viability (r?=?0.8, p<.001). Data are discussed with a view that the cytoplasm is in a glassy state in CS and AS, but during the CD treatments, underwent transition to a liquid state. We suggest that enzymes can be active during CD but not under the seed bank conditions tested. However, upon CD, enzyme-based repair processes were apparently outweighed by deteriorative reactions. We conclude that seed ageing by CD and under seed bank conditions are accompanied by different biochemical reactions.  相似文献   

9.
Seeds in the field experience wet-dry cycling that is akin to the well-studied commercial process of seed priming in which seeds are hydrated and then re-dried to standardise their germination characteristics. To investigate whether the persistence (defined as in situ longevity) and antioxidant capacity of seeds are influenced by wet-dry cycling, seeds of the global agronomic weed Avena sterilis ssp. ludoviciana were subjected to (1) controlled ageing at 60% relative humidity and 53.5°C for 31 days, (2) controlled ageing then priming, or (3) ageing in the field in three soils for 21 months. Changes in seed viability (total germination), mean germination time, seedling vigour (mean seedling length), and the concentrations of the glutathione (GSH) / glutathione disulphide (GSSG) redox couple were recorded over time. As controlled-aged seeds lost viability, GSH levels declined and the relative proportion of GSSG contributing to total glutathione increased, indicative of a failing antioxidant capacity. Subjecting seeds that were aged under controlled conditions to a wet-dry cycle (to ?1 MPa) prevented viability loss and increased GSH levels. Field-aged seeds that underwent numerous wet-dry cycles due to natural rainfall maintained high viability and high GSH levels. Thus wet-dry cycles in the field may enhance seed longevity and persistence coincident with re-synthesis of protective compounds such as GSH.  相似文献   

10.
Limited data in animal models suggest that colonic mucosa undergoes adaptive growth following massive small bowel resection (SBR). In vitro data suggest that intestinal cell growth is regulated by reactive oxygen species and redox couples [e.g., glutathione (GSH)/glutathione disulfide (GSSG) and cysteine (Cys)/cystine (CySS) redox]. We investigated the effects of SBR and alterations in redox on colonic growth indexes in rats after either small bowel transection (TX) or 80% midjejunoileal resection (RX). Rats were pair fed +/- blockade of endogenous GSH synthesis with buthionine sulfoximine (BSO). Indexes of colonic growth, proliferation, and apoptosis and GSH/GSSG and Cys/CySS redox potentials (E(h)) were determined. RX significantly increased colonic crypt depth, number of cells per crypt, and epithelial cell proliferation [crypt cell bromodeoxyuridine (BrdU) incorporation]. Administration of BSO markedly decreased colonic mucosal GSH, GSSG, and Cys concentrations in both TX and RX groups, with a resultant oxidation of GSH/GSSG and Cys/CySS E(h). BSO did not alter colonic crypt cell apoptosis but significantly increased all colonic mucosal growth indexes (crypt depth, cells/crypt, and BrdU incorporation) in both TX and RX groups in a time- and dose-dependent manner. BSO significantly decreased plasma GSH and GSSG, oxidized GSH/GSSG E(h), and increased plasma Cys and CySS concentrations. Collectively, these data provide in vivo evidence indicating that oxidized colonic mucosal redox status stimulates colonic mucosal growth in rats. The data also suggest that GSH is required to maintain normal colonic and plasma Cys/CySS homeostasis in these animal models.  相似文献   

11.
Glutathione (GSH) plays an important neuroprotective role, and its synthesis depends on the amount of available cysteine (CSH) in the cells. Various kinds of evidence suggest that astrocytes can provide CSH or GSH to neurons, but the delivery mechanism of the thiol-compounds has not been elucidated. In this study, the dynamics of CSH, GSH and their disulphides in astrocyte culture medium were investigated by following the time-course of concentration changes and by computer simulation and curve fitting to experimental data using a mathematical model. The model consists of seven reactions and three transports, which are grouped into four categories: autoxidation of thiols into disulphides, thiol-disulphide exchange and reactions of thiols with medium components, as well as the cellular influx and efflux of thiols and disulphides. The obtained results are interpreted that cystine (CSSC) after entering astrocyte is reduced to CSH, most of which is released to medium and autoxidized to CSSC. The efflux of GSH was estimated to be considerably slower than that of CSH, and most of the excreted GSH is converted to cysteine-glutathione disulphide principally through the thiol-disulphide exchange. The results seem to indicate that astrocytes provide neurons mainly with CSH, rather than GSH, as the antioxidant material for neuroprotection.  相似文献   

12.
Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.  相似文献   

13.
The glutathione redox couple (GSH/GSSG) and hydrogen peroxide (H2O2) are central to redox homeostasis and redox signaling, yet their distribution within an organism is difficult to measure. Using genetically encoded redox probes in Drosophila, we establish quantitative in vivo mapping of the glutathione redox potential (EGSH) and H2O2 in defined subcellular compartments (cytosol and mitochondria) across the whole animal during development and aging. A chemical strategy to trap the in vivo redox state of the transgenic biosensor during specimen dissection and fixation expands the scope of fluorescence redox imaging to include the deep tissues of the adult fly. We find that development and aging are associated with redox changes that are distinctly redox couple-, subcellular compartment-, and tissue-specific. Midgut enterocytes are identified as prominent sites of age-dependent cytosolic H2O2 accumulation. A longer life span correlated with increased formation of oxidants in the gut, rather than a decrease.  相似文献   

14.
15.
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking.  相似文献   

16.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

17.
Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate–glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction–oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.

Monitoring the daily in vivo dynamics of the chloroplastic GSH redox state in light-stressed wild-type plants versus photoprotective mutants provides insight into the photosynthesis-dependent production of oxidants.  相似文献   

18.
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.  相似文献   

19.
Zhu JW  Yuan JF  Yang HM  Wang ST  Zhang CG  Sun LL  Yang H  Zhang H 《Biochimie》2012,94(3):617-627
Extracellular cysteine (Cys)/cystine (CySS) redox potential (Eh) has been shown to regulate diverse biological processes, including enzyme catalysis, gene expression, and signaling pathways for cell proliferation and apoptosis, and is sensitive to aging, smoking, and other host factors. However, the effects of extracellular Cys/CySS redox on the nervous system remain unknown. In this study, we explored the role of extracellular Cys/CySS Eh in metabotropic glutamate receptor 5 (mGlu5) activation to understand the mechanism of its regulation of nerve cell growth and activation. We showed that the oxidized Cys/CySS redox state (0 mV) in C6 glial cells induced a significant increase in mGlu5-mediated phosphorylation of extracellular signal-regulated kinase (ERK), blocked by an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK), U0126, a nonpermeant alkylating agent, 4-acetamide-4′-maleimidylstilbene-2,2′-disulfonic acid (AMS), and a specific mGlu5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), respectively. ERK phosphorylation under oxidized extracellular Cys/CySS Eh was confirmed in mGlu5-overexpressed human embryonic kidney 293 (HEK293) cells. Oxidized extracellular Cys/CySS Eh also stimulated the generation of intracellular reactive oxygen species (ROS) involved in the phosphorylation of ERK by mGlu5. Moreover, activation of mGlu5 by oxidized extracellular Cys/CySS Eh was found to affect expression of NF-κB and inducible nitric oxide synthase (iNOS). The results also showed that extracellular Cys/CySS Eh involved in the activation of mGlu5 controlled cell death and cell activation in neurotoxicity. In addition, plasma Cys/CySS Eh was found to be associated with the process of Parkinson’s disease (PD) in a rotenone-induced rat model of PD together with dietary deficiency and supplementation of sulfur amino acid (SAA). The effects of extracellular Cys/CySS Eh on SAA dietary deficiency in the rotenone-induced rat model of PD was almost blocked by MPEP pretreatment, further indicating that oxidized extracellular Cys/CySS Eh plays a role in mGlu5 activity. Taken together, the results indicate that mGlu5 can be activated by extracellular Cys/CySS redox in nerve cells, which possibly contributes to the process of PD. These in vitro and in vivo findings may aid in the development of potential new nutritional strategies that could assist in slowing the degeneration of PD.  相似文献   

20.
Redox state of glutathione in human plasma   总被引:5,自引:0,他引:5  
Thiol and disulfide forms of glutathione (GSH) and cysteine (Cys) were measured in plasma from 24 healthy individuals aged 25-35 and redox potential values (E(h)) for thiol/disulfide couples were calculated using the Nernst equation. Although the concentration of GSH (2.8 +/- 0.9 microM) was much greater than that of GSSG (0.14 +/- 0.04 microM), the redox potential of the GSSG/2GSH pool (-137 +/- 9 mV) was considerably more oxidized than values for tissues and cultured cells (-185 to -258 mV). This indicates that a rapid oxidation of GSH occurs upon release into plasma. The difference in values between individuals was remarkably small, suggesting that the rates of reduction and oxidation in the plasma are closely balanced to maintain this redox potential. The redox potential for the Cys and cystine (CySS) pool (-80 +/- 9 mV) was 57 mV more oxidized, showing that the GSSG/2GSH and the CySS/2Cys pools are not in redox equilibrium in the plasma. Potentials for thiol/disulfide couples involving CysGly were intermediate between the values for these couples. Regression analyses showed that the redox potentials for the different thiol/disulfide couples within individuals were correlated, with the E(h) for CySS-mono-Gly/(Cys. CysGly) providing the best correlation with other low molecular weight pools as well as protein disulfides of GSH, CysGly and Cys. These results suggest that E(h) values for GSSG/2GSH and CySS-mono-Gly/(Cys. CysGly) may provide useful means to quantitatively express the oxidant/antioxidant balance in clinical and epidemiologic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号