首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maternal poly(A)+RNA, histone mRNA, and actin mRNA exhibit unique spatial distributions in the different ooplasmic regions of ascidian eggs. These RNAs also appear to migrate with their respective ooplasms during the episode of extensive cytoplasmic rearrangement that occurs after fertilization, suggesting they are associated with a structural framework. The role of the cytoskeletal framework (CF) in determining the spatial distribution of maternal mRNA was tested by subjecting Triton X-100 extracted (Styela plicata) eggs and early embryos to in situ hybridization with poly(U) and cloned DNA probes. Grain counts indicated that substantial proportions of the egg poly(A)+RNA, histone mRNA, and actin mRNA were present in the CF and that there was no alteration in the extent of mRNA-CF interactions during the period between fertilization and the two-cell stage. Analysis of grain distributions indicated that poly(A)+RNA, histone mRNA, and actin mRNA were concentrated in the same regions of detergent-extracted eggs as they are in intact eggs. The proportions and spatial distribution of these RNAs in the CF were not affected when the actin cytoskeleton was destabilized by cytochalasin B or DNAse I. The data suggest that maternal mRNA is associated with the CF, that this association is responsible for mRNA rearrangement during ooplasmic segregation, and that mRNA-CF interactions are not dependent on the integrity of the actin cytoskeleton.  相似文献   

2.
3.
In this investigation, we characterize the embryonic and adult actins and describe the embryonic expression of a muscle actin in the ascidian Styela. Two-dimensional polyacrylamide gel electrophoresis showed that embryos, tadpole larvae, and adult organs contain three major and two minor isoforms of actin. Two of the major isoforms, which are present in the mantle, branchial sac, alimentary tract, and gonads of adults and in eggs, embryos, and heads and tails of tadpoles, are likely to be cytoplasmic actins. The third major isoform, which was enriched in the mantle and branchial sac of adults and localized primarily in the tails of tadpoles, is a muscle actin. The muscle actin isoform was not detected in eggs and early embryos. Radioactivity incorporation studies showed that the cytoplasmic actins were synthesized throughout early development, but muscle actin synthesis was first detected between the 16- and 64-cell stages, 2-3 hr after fertilization. Two lines of evidence indicate that embryonic muscle actin synthesis is directed in part by maternal mRNA. First, poly(A)+ RNA isolated from unfertilized eggs directed the synthesis of muscle actin in an mRNA-dependent reticulocyte lysate. Second, muscle actin was synthesized in anucleate egg fragments. Arguments are also presented that muscle actin synthesis is not directed exclusively by maternal mRNA. It is concluded that embryonic and adult Styela exhibit actin heterogeneity, that one of the actin isoforms is a muscle actin, and that the muscle actin is synthesized during embryogenesis under the direction of maternal and zygotic mRNA.  相似文献   

4.
The possibility of an association of mRNA with the cytoskeletal framework (CF) of ascidian (Styela plicata) follicle cells was examined in this study. The approach was to extract the follicle cells with Triton X-100 and determine whether mRNA persisted in the insoluble residue by two methods, in situ hybridization with poly(U) and actin DNA probes and the incorporation of radioactive isotopes into RNA. Triton X-100 extraction of follicle cells yielded a filamentous CF containing approximately 70% of the total poly (A) but only 9% of the total lipid, 23% of the total protein, and 28% of the total RNA. In situ hybridization with a poly (U) probe indicated that approximately 70% of the poly (A) was associated with the CF. In situ hybridization with a cloned actin DNA probe indicated that approximately 60% of the actin mRNA was associated with the CF. Autoradiography of detergent- extracted follicle cells, which had been labeled with [3H]uridine or [3H]adenosine, indicated that greater than 90% of the newly synthesized poly (A)+RNA was preserved in the CF. Thus more newly synthesized mRNA than steady-state mRNA may be present in the Triton X-100 insoluble fraction. It is concluded that a significant proportion of the mRNA complement of ascidian follicle cells is associated with the CF.  相似文献   

5.
6.
Summary Ooplasmic segregation in ascidians includes the movement of the myoplasm, a pigmented cytoplasmic region thought to be involved in the determination of the embryonic muscle and mesenchyme cell lineages, into the vegetal hemisphere of the egg. A myoplasmic cytoskeletal domain (MCD), composed of a cortical actin network (the PML) and an underlying filamentous lattice extending deep into the cytoplasm, is present in this region. The MCD gradually recedes into the vegetal hemisphere during ooplasmic segregation. It has been proposed that the segregation of the myoplasm is mediated by the contraction of the PML. To test this possibility we have examined ooplasmic segregation in eggs in which the internal parts of the MCD were separated from the PML by centrifugal force. Transmission and scanning electron microscopy of eggs extracted with Triton X-100 showed that the PML remained intact when the internal portions of the MCD were displaced and stratified by centrifugation. When stratified eggs were fertilized there were no rearrangements of the visible cytoplasmic inclusions, but the cellular deformations and the recession of the PML characteristic of ooplasmic segregation occurred as usual. The results indicate that the recession of the PML occurs independently of the internal constituents of the MCD and suggest that PML contraction is the motive force for ooplasmic segregation.  相似文献   

7.
A cDNA library prepared from fertilized eggs of the ascidian Halocynthia roretzi was screened for prelocalized mRNAs in the early embryo by means of whole-mount in situ hybridization using a digoxigenin-labeled antisense RNA of each clone. Random mass screening of 150 cDNAs in a fertilized egg yielded six different clones which showed mRNA localization in the posterior-vegetal cytoplasm of the 8-cell embryo. An in situ hybridization study of the detailed spatial distribution of each mRNA in embryos of various stages revealed that there are, in contrast to the identical localization in embryos after the 16-cell stage, two distinct patterns of RNA distribution at earlier stages. One is colocalization with the myoplasm from the prefertilization stage to the 8-cell stage (type I postplasmic RNAs). The other is delayed accumulation of RNA at the posterior-vegetal cytoplasm after fertilization (type II postplasmic RNAs). We found that both types of RNAs associate with the cytoskeleton, but that they show different sensitivities to inhibitors of the cytoskeleton; translocation of the type I RNAs is dependent upon microfilaments during the first phase of ooplasmic segregation and dependent upon microtubules during the second phase of segregation, whereas translocation of the type II RNAs is dependent upon microfilaments throughout ooplasmic segregation. These results show that there are two pathways for the localization of the RNAs at the posterior-vegetal cytoplasm in the 8-cell embryo of the ascidian H. roretzi.  相似文献   

8.
9.
Chaetopterus eggs undergo characteristic ooplasmic rearrangements during development. Ooplasmic rearrangement in the absence of cell division is called differentiation without cleavage. Treatment of fertilized eggs with cytochalasin B allowed the continuation of nuclear divisions in the absence of cytoplasmic division. The ooplasmic rearrangements in uncleaved cytochalasin B-treated fertilized eggs closely paralleled those of normal development. Colchicine treatment, which blocks mitosis, arrested ooplasmic movements at a stage comparable to that of normal embryos at first cleavage. Neither drug eliminated the segregation between hyaloplasm and endoplasm, even though colchicine prevented the later rearrangements. Localizing movements are therefore dependent upon normal microtubule function, but not on microfilament function. The maintenance of localized materials does not seem to depend exclusively on either of these organelles.  相似文献   

10.
Summary

The mosaic behavior of blastomeres isolated from ascidian embryos has been taken as evidence that localized ooplasmic factors (cytoplasmic determinants) specify tissue precursor cells during embryogenesis. Experiments involving the transfer of egg cytoplasm have revealed the presence and localization of various kinds of cytoplasmic determinants in eggs of Halocynthia roretzi. Three cell fates, epidermis, muscle and endoderm, are fixed by cytoplasmic determinants. The three kinds of tissue determinants move in different directions during ooplasmic segregation. Prior to the onset of the first cleavage the three kinds of determinants reside in egg regions that correspond to the future fate map of the embryo and then they are differentially partitioned into specific blastomeres. In addition to tissue-specific determinants, there is evidence suggesting that ascidian eggs contain localized cytoplasmic factors that are responsible for controlling the cleavage pattern and morphogenetic movements. Transplantation of posterior-vegetal egg cytoplasm to an anterior-vegetal position causes a reversal of the anterior-posterior polarity of the cleavage pattern. Localized cytoplasmic factors in the posterior-vegetal region are involved in the generation of a unique cleavage pattern. When vegetal pole cytoplasm is transplanted to the animal pole or equatorial position of the egg, ectopic gastrulation occurs at the site of transplantation. This finding supports the idea that vegetal pole cytoplasm specifies the site of gastrulation. Recently, we started a cDNA project to analyze maternal mRNAs. An arrayed cDNA library of fertilized eggs of H. roretzi was constructed, and more than 2000 clones have been partially sequenced so far. To estimate the proportion of the maternal mRNAs that are localized in the egg and embryo, 150 randomly selected clones were examined by in situ hybridization. We found eight mRNAs that are localized in the eight-cell embryo, of which three were localized to the myoplasm (a specific region of the egg cytoplasm that is partitioned into muscle-lineage blastomeres) of the egg, and then to the postplasm of cleavage-stage embryos. These results indicate that the proportion of localized messages is much higher than we expected. These localized maternal messages may be involved in the regulation of various developmental processes.  相似文献   

11.
Recent studies have shown that some maternal mRNAs are localized in specific cytoplasmic regions of eggs and embryos and are rearranged in concert with the cytoplasmic movements that fix the embryonic axes. The localization and ooplasmic segregation of mRNA molecules may be mediated by their association with specific egg cytoskeletal domains.  相似文献   

12.
Messenger RNA molecules are localized in the cortical region of eggs and unevenly segregated to the embryonic cells during early development of the annelid Chaetopterus. The egg cortex is enriched in two organelles, ectoplasmic spherules and associated structures, which are similar in appearance to nuage. The physical basis of cortical mRNA localization was examined in stratified eggs and in eggs extracted with the nonionic detergent Nonidet P-40 (NP-40). The cortical organelles were displaced to the most centrifugal zone of stratified eggs. In situ hybridization with poly(U) or cloned DNA probes showed that a large proportion of the poly(A)+RNA, histone mRNA, and actin mRNA molecules was also displaced to the centrifugal zone. Extraction with NP-40 revealed a detergent-insoluble cytoskeletal domain (CD) in the egg cortex which contained the remnants of ectoplasmic spherules and nuage embedded in a fibrous network. Although most of the total protein and RNA was extracted by NP-40, a large proportion of the poly(A)+RNA, histone mRNA, and actin mRNA molecules was retained in the CD. In situ hybridization of stratified eggs extracted with NP-40 indicated that the CD, with its associated organelles and mRNA molecules, is displaced to the centrifugal zone as a unit. The results suggest that the tenacious association of mRNA molecules with the cortical CD may be responsible for maternal mRNA localization during early development.  相似文献   

13.
Ooplasmic segregation in ascidian eggs consists of two phases of cytoplasmic movement, the first phase is mediated by the microfilament system and the second is mediated by the microtubule system. Recently, two novel proteins, p58 and myoplasmin-C1, which are localized to the myoplasm, were suggested to have important roles in muscle differentiation. In order to analyze the molecular mechanisms underlying ooplasmic segregation, the interactions between actin, tubulin, p58 and myoplasmin-C1 were examined. During the first segregation, microtubule meshwork in the unfertilized egg disappeared. At the second segregation, a novel structure of the microtubules that extended from the sperm aster and localized in the cortical region of the myoplasm was found. Moreover, uniform distribution of the cortical actin filament was observed at the second segregation. During the course of myoplasm rearrangement, p58 and myoplasmin-C1 are colocalized and can form a molecular complex in vitro. This complex of p58 and myoplasmin-C1 is a good candidate for a cytoskeletal component of the myoplasm, and is likely to be involved in the correct distribution of cytoplasmic determinants.  相似文献   

14.
The role of cell division in the expression of muscle actin and its relationship to acetylcholinesterase (AChE) development was examined in cleavage-arrested embryos of the ascidian Styela. Muscle actin expression was detected by two-dimensional gel electrophoresis of radioactively labelled proteins and by in situ hybridization with a cDNA probe, whereas AChE activity was assayed by enzyme histochemistry. In the majority of cases, muscle actin expression was first detected in embryos arrested after the 16-cell stage. Some embryos showed muscle actin expression after arrest at the 8-cell stage, however, muscle actin mRNA did not accumulate in embryos arrested at earlier cleavages. The cells that expressed muscle actin in 8- to 64-cell cleavage-arrested embryos belonged to the primary muscle lineage; secondary muscle cell precursors did not express muscle actin. Zygotic muscle actin mRNA appeared to accumulate with myoplasmic pigment granules in the perinuclear region of cleavage-arrested embryos, suggesting that the myoplasm may have a role in the organization of muscle cells. In contrast to muscle actin, AChE was detected in a small proportion of embryos treated with cytochalasin as early as the 1- or 2-cell stage, and most embryos treated with cytochalasin at later cleavages expressed this enzyme in some of their cells. Most primary muscle lineage cells expressed both muscle actin mRNA and AChE, however, some cells expressed only muscle actin mRNA or AChE. The results suggest that at least three cleavages are required for muscle actin expression and that muscle actin and AChE expression can be uncoupled in cleavage-arrested embryos.  相似文献   

15.
Heat shock proteins (HSP) are a group of highly conserved proteins that regulate protein folding and ameliorate the effects of environmental stress. In the present study, the question of whether or not ascidian oocytes, embryos and larvae constitutively synthesize HSP was studied using HSP 60 and HSP 70 antibodies. Developmental stages obtained from Boltenia villosa, Cnemidocarpa finmarkiensis, Styela montereyensis and Corella willmeriana were examined for HSP using indirect immunocytochemistry. Myoplasm in oocytes and unfertilized eggs reacted with HSP 60 and 70 antibodies. HSP signals dramatically moved into the vegetal egg cytoplasm during ooplasmic segregation and colocalized with the myoplasm. In cleavage-stage embryos, HSP signals were partitioned with the myoplasm into muscle progenitor blastomeres and HSP signals were evident in the tail muscle cells of larvae. Immunoblots of proteins extracted from oocytes, eggs, embryos and larvae indicate that anti-HSP 60 recognizes a single band having an estimated molecular weight of 60 kDa. Egg centrifugation experiments suggest that most of the ascidian myoplasmic HSP are mitochondrial proteins. These results raise an intriguing possibility that mitochondria associated with the myoplasm perform biochemical functions that are unique to the embryonic muscle cell lineage.  相似文献   

16.
The myoplasm of ascidian eggs is a localized cytoskeletal domain that is segregated to presumptive larval tail muscle cells during embryonic development. We have identified a cytoskeletal protein recognized by a vertebrate neurofilament monoclonal antibody (NN18) which is concentrated in the myoplasm in eggs and embryos of a variety of ascidian species. The NN18 antigen is localized in the periphery of unfertilized eggs, segregates with the myoplasm after fertilization, and enters the larval tail muscle cells during embryonic development. Western blots of one-dimensional and two-dimensional gels showed that the major component recognized by NN18 antibody is a 58 x 10(3) Mr protein (p58), which exists in at least three different isoforms. The enrichment of p58 in the Triton X-100-insoluble fraction of eggs and its reticular staining pattern in eggs and embryos suggests that it is a cytoskeletal protein. In subsequent experiments, p58 was used as a marker to determine whether changes in the myoplasm occur in eggs of anural ascidian species, i.e. those exhibiting a life cycle lacking tadpole larvae with differentiated muscle cells. Although p58 was localized in the myoplasm in eggs of four urodele ascidian species that develop into swimming tadpole larvae, this protein was distributed uniformly in eggs of three anural ascidian species. The eggs of two of these anural species contained the actin lamina, another component of the myoplasm, whereas the third anural species lacked the actin lamina. There was no detectible localization of p58 after fertilization or segregation into muscle lineage cells during cleavage of anural eggs. NN18 antigen was uniformly distributed in pre-vitellogenic oocytes and then localized in the perinuclear zone during vitellogenesis of urodele and anural ascidians. Subsequently, NN18 antigen was concentrated in the peripheral cytoplasm of post-vitellogenic oocytes and mature eggs of urodele, but not anural, ascidians. It is concluded that the myoplasm of ascidian eggs contains an intermediate filament-like cytoskeletal network which is missing in anural species that have modified or eliminated the tadpole larva.  相似文献   

17.
18.
The effect of ultraviolet (uv) light on embryonic development was examined in the ascidian Styela clava. uv irradiation (3.0 x 10(-3) J mm-2) of the entire surface of fertilized eggs during ooplasmic segregation prevented gastrulation, sensory cell induction, and embryonic axis formation. The uv-irradiated embryos completed ooplasmic segregation and cleaved normally, but vegetal blastomeres did not invaginate at the beginning of gastrulation, sensory cells in the larval brain did not develop tyrosinase or melanin pigment, and the larval tail did not develop. Endoderm, epidermis, and muscle cells differentiated in the uv-irradiated embryos, however, as evidenced by expression of endodermal alkaline phosphatase (AP), an epidermal-specific antigen, and alpha-actin, myosin heavy chain, and acetylcholinesterase (AChE) in muscle cells. Higher doses of uv light (6.0-9.0 x 10(-3) J mm-2) suppressed expression of the epidermal antigen and muscle cell markers, whereas the development of endodermal AP was insensitive. Irradiation at various times between fertilization and the 16-cell stage revealed that gastrulation, sensory cell differentiation, and axis formation are sensitive to uv light only during ooplasmic segregation. Irradiation of restricted regions of the zygote during ooplasmic segregation showed that the uv-sensitive components are localized in the vegetal hemisphere. The absorption characteristics of the uv-sensitive components suggest that they are nucleic acids. The results show that uv-sensitive components that specify gastrulation, sensory cell induction, and embryonic axis formation are localized in the vegetal hemisphere of Styela eggs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号