首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the last decade the zebrafish has emerged as a major genetic model organism. While stimulated originally by the utility of its transparent embryos for the study of vertebrate organogenesis, the success of the zebrafish was consolidated through multiple genetic screens, sequencing of the fish genome by the Sanger Center, and the advent of extensive genomic resources. In the last few years the potential of the zebrafish for in vivo cell biology, physiology, disease modeling and drug discovery has begun to be realized. This review will highlight work on cardiac electrophysiology, emphasizing the arenas in which the zebrafish complements other in vivo and in vitro models; developmental physiology, large-scale screens, high-throughput disease modeling and drug discovery. Much of this work is at an early stage, and so the focus will be on the general principles, the specific advantages of the zebrafish and on future potential.  相似文献   

2.
Natural products have immense therapeutic potential not only due to their structural variation and complexity but also due to their range of biological activities. Research based on natural products has led to the discovery of molecules with biomedical and pharmaceutical applications in different therapeutic areas like cancer, inflammation responses, diabetes, and infectious diseases. There are still several challenges to be overcome in natural product drug discovery research programs and the challenge of high throughput screening of natural substances is one of them. Bioactivity screening is an integral part of the drug discovery process and several in vitro and in vivo biological models are now available for this purpose. Among other well-reported biological models, the zebrafish (Danio rerio) is emerging as an important in vivo model for preclinical studies of synthetic molecules in different therapeutic areas. Zebrafish embryos have a short reproductive cycle, show ease of maintenance at high densities in the laboratory and administration of drugs is a straightforward procedure. The embryos are optically transparent, allowing for the visualization of drug effects on internal organs during the embryogenesis process. In this review, we illustrate the importance of using zebrafish as an important biological model in the discovery of bioactive drugs from natural sources.  相似文献   

3.
Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future.KEY WORDS: Regeneration, Zebrafish, Disease model, Gastrointestinal, Hematovascular  相似文献   

4.
Technological innovation has helped the zebrafish embryo gain ground as a disease model and an assay system for drug screening. Here, we review the use of zebrafish embryos and early larvae in applied biomedical research, using selected cases. We look at the use of zebrafish embryos as disease models, taking fetal alcohol syndrome and tuberculosis as examples. We discuss advances in imaging, in culture techniques (including microfluidics), and in drug delivery (including new techniques for the robotic injection of compounds into the egg). The use of zebrafish embryos in early stages of drug safety-screening is discussed. So too are the new behavioral assays that are being adapted from rodent research for use in zebrafish embryos, and which may become relevant in validating the effects of neuroactive compounds such as anxiolytics and antidepressants. Readouts, such as morphological screening and cardiac function, are examined. There are several drawbacks in the zebrafish model. One is its very rapid development, which means that screening with zebrafish is analogous to "screening on a run-away train." Therefore, we argue that zebrafish embryos need to be precisely staged when used in acute assays, so as to ensure a consistent window of developmental exposure. We believe that zebrafish embryo screens can be used in the pre-regulatory phases of drug development, although more validation studies are needed to overcome industry scepticism. Finally, the zebrafish poses no challenge to the position of rodent models: it is complementary to them, especially in early stages of drug research.  相似文献   

5.
The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.  相似文献   

6.
The zebrafish has proven to be an invaluable vertebrate animal model for developmental biology. Recent technological advances have added an arsenal of tools to expand its use into the realm of drug discovery. This includes methodology to generate transgenic reporter lines that allow for the direct visualization of fluorescent markers in live embryos. With the addition of automated imaging and analysis of embryos treated with small molecules, these innovations have expanded its utility into high throughput chemical screens. This review will highlight some of these advances that have propelled zebrafish as a tool for drug discovery. Birth Defects Research (Part C) 90:185–192, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Zebrafish (Danio rerio) has proven to be a versatile and reliable in vivo experimental model to study human hematopoiesis and hematological malignancies. As vertebrates, zebrafish has significant anatomical and biological similarities to humans, including the hematopoietic system. The powerful genome editing and genome-wide forward genetic screening tools have generated models that recapitulate human malignant hematopoietic pathologies in zebrafish and unravel cellular mechanisms involved in these diseases. Moreover, the use of zebrafish models in large-scale chemical screens has allowed the identification of new molecular targets and the design of alternative therapies. In this review we summarize the recent achievements in hematological research that highlight the power of the zebrafish model for discovery of new therapeutic molecules. We believe that the model is ready to give an immediate translational impact into the clinic.  相似文献   

8.
Animal models of human disease: zebrafish swim into view   总被引:9,自引:0,他引:9  
Despite the pre-eminence of the mouse in modelling human disease, several aspects of murine biology limit its routine use in large-scale genetic and therapeutic screening. Many researchers who are interested in an embryologically and genetically tractable disease model have now turned to zebrafish. Zebrafish biology allows ready access to all developmental stages, and the optical clarity of embryos and larvae allow real-time imaging of developing pathologies. Sophisticated mutagenesis and screening strategies on a large scale, and with an economy that is not possible in other vertebrate systems, have generated zebrafish models of a wide variety of human diseases. This Review surveys the achievements and potential of zebrafish for modelling human diseases and for drug discovery and development.  相似文献   

9.
Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of influenza infection and the associated host innate immune response.KEY WORDS: Influenza, Zebrafish, Virus, Innate immunity  相似文献   

10.
Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.  相似文献   

11.
李辉辉  黄萍  董巍  朱作言  刘东 《遗传》2013,35(4):410-420
1972年美国俄勒冈大学George Streisinger教授开始研究斑马鱼(Danio rerio)至今, 斑马鱼以其独特的优点, 已经成为现代遗传学、发育生物学研究的重要模式动物。世界范围内斑马鱼研究群体的工作已奠定了较为完善的胚胎学、分子遗传学研究基础, 并且斑马鱼已被应用于开发人类重大疾病模型和药物筛选平台, 取得了许多有价值的研究成果。文章简述了斑马鱼成为模式动物的历史, 侧重介绍了业已建立的白血病、黑色素瘤、感染免疫疾病、神经疾病等斑马鱼模型, 以及利用斑马鱼进行小分子化合物/药物筛选和研发的现状。斑马鱼研究向生物医学方向的拓展, 必将为人类理解重大疾病发生机制、寻找疾病治疗方法, 为维护人类卫生、健康做出贡献。  相似文献   

12.
在过去20年里,斑马鱼已成为一种重要的模式脊椎动物,在发育、遗传、免疫、肿瘤和毒理等诸多研究领域中被广泛应用。近年来,斑马鱼作为活体模型越来越多地应用于某些生物学过程的药物筛选。通过斑马鱼初步筛选,在药物研发初期可确定化合物的生物学活性、毒性以及副作用等。最近的研究还发现,斑马鱼不仅用于新药筛选,还可用于药物结构的优化。本文重点介绍斑马鱼在新药发现中的应用。  相似文献   

13.

Background

In the drug discovery pipeline, safety pharmacology is a major issue. The zebrafish has been proposed as a model that can bridge the gap in this field between cell assays (which are cost-effective, but low in data content) and rodent assays (which are high in data content, but less cost-efficient). However, zebrafish assays are only likely to be useful if they can be shown to have high predictive power. We examined this issue by assaying 60 water-soluble compounds representing a range of chemical classes and toxicological mechanisms.

Methodology/Principal Findings

Over 20,000 wild-type zebrafish embryos (including controls) were cultured individually in defined buffer in 96-well plates. Embryos were exposed for a 96 hour period starting at 24 hours post fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC50 determination. Zebrafish embryo LC50 (log mmol/L), and published data on rodent LD50 (log mmol/kg), were found to be strongly correlated (using Kendall''s rank correlation tau and Pearson''s product-moment correlation). The slope of the regression line for the full set of compounds was 0.73403. However, we found that the slope was strongly influenced by compound class. Thus, while most compounds had a similar toxicity level in both species, some compounds were markedly more toxic in zebrafish than in rodents, or vice versa.

Conclusions

For the substances examined here, in aggregate, the zebrafish embryo model has good predictivity for toxicity in rodents. However, the correlation between zebrafish and rodent toxicity varies considerably between individual compounds and compound class. We discuss the strengths and limitations of the zebrafish model in light of these findings.  相似文献   

14.
The zebrafish model has been increasingly explored as an alternative model for toxicity screening of pharmaceutical drugs. However, little is understood about the bioactivation of drug to reactive metabolite and phase I and II metabolism of chemical in zebrafish as compared with human. The primary aim of our study was to establish the bioactivation potential of zebrafish using acetaminophen as a probe substrate. Our secondary aim was to perform metabolite profiling experiments on testosterone, a CYP3A probe substrate, in zebrafish and compare the metabolite profiles with that of human. The glutathione trapping assay of N-acetyl-p-benzoquinone imine demonstrated that zebrafish generates the same reactive metabolite as humans from the bioactivation of acetaminophen. Zebrafish possesses functional CYP3A4/5-like and UDP-glucuronosyltransferase metabolic activities on testosterone. Differential testosterone metabolism was observed among the two species. In silico docking studies suggested that the zebrafish CYP3A65 was responsible for the bioactivation of acetaminophen and phase I hydroxylation of testosterone. Our findings reinforce the need to further characterize the drug metabolism phenotype of zebrafish before the model can fully achieve its potential as an alternative toxicity screening model in drug research.  相似文献   

15.
Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) and Parkinson’s disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.  相似文献   

16.
Rapid development, transparency and small size are the outstanding features of zebrafish that make it as an increasingly important vertebrate system for developmental biology, functional genomics, disease modeling and drug discovery. Zebrafish has been regarded as ideal animal specie for studying the relationship between genotype and phenotype, for pathway analysis and systems biology. However, the tremendous amount of data generated from large numbers of embryos has led to the bottleneck of data analysis and modeling. The zebrafish image quantitator (ZFIQ) software provides streamlined data processing and analysis capability for developmental biology and disease modeling using zebrafish model. AVAILABILITY: ZFIQ is available for download at http://www.cbi-platform.net.  相似文献   

17.
The zebrafish (Danio rerio) has proven to be a powerful vertebrate model system for the genetic analysis of developmental pathways and is only beginning to be exploited as a model for human disease and clinical research. The attributes that have led to the emergence of the zebrafish as a preeminent embryological model, including its capacity for forward and reverse genetic analyses, provides a unique opportunity to uncover novel insights into the molecular genetics of cancer. Some of the advantages of the zebrafish animal model system include fecundity, with each female capable of laying 200-300 eggs per week, external fertilization that permits manipulation of embryos ex utero, and rapid development of optically clear embryos, which allows the direct observation of developing internal organs and tissues in vivo. The zebrafish is amenable to transgenic and both forward and reverse genetic strategies that can be used to identify or generate zebrafish models of different types of cancer and may also present significant advantages for the discovery of tumor suppressor genes that promote tumorigenesis when mutationally inactivated. Importantly, the transparency and accessibility of the zebrafish embryo allows the unprecedented direct analysis of pathologic processes in vivo, including neoplastic cell transformation and tumorigenic progression. Ultimately, high-throughput modifier screens based on zebrafish cancer models can lead to the identification of chemicals or genes involved in the suppression or prevention of the malignant phenotype. The identification of small molecules or gene products through such screens will serve as ideal entry points for novel drug development for the treatment of cancer. This review focuses on the current technology that takes advantage of the zebrafish model system to further our understanding of the genetic basis of cancer and its treatment.  相似文献   

18.
辛胜昌  赵艳秋  李松  林硕  仲寒冰 《遗传》2012,34(9):1144-1152
斑马鱼具有子代数量多、体外受精、胚胎透明、可以做大规模遗传突变筛选等生物学特性, 因此成为一种良好的脊椎动物模式生物。随着研究的深入, 斑马鱼不仅应用于遗传学和发育生物学研究, 而且拓展和延伸到疾病模型和药物筛选领域。作为一种整体动物模型, 斑马鱼能够全面地检测评估化合物的活性和副作用, 实现高内涵筛选。近年来, 科学家们不断地发展出新的斑马鱼疾病模型和新的筛选技术, 并找到了一批活性化合物。这些化合物大多数在哺乳动物模型中也有相似的效果, 其中前列腺素E2(dmPGE2)和来氟米特(Leflunomide)已经进入临床实验, 分别用来促进脐带血细胞移植后的增殖和治疗黑素瘤。这些成果显示了斑马鱼模型很适合用于药物筛选。文章概括介绍了斑马鱼模型的特点和近年来在疾病模型和药物筛选方面的进展, 希望能够帮助人们了解斑马鱼在新药研发中的应用, 并开展基于斑马鱼模型的药物筛选。  相似文献   

19.
Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号