首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Renal clearance experiments were conducted on feral chickens descended from birds collected from a coral island off the coast of Queensland, Australia. Following a control period when 0.13 M NaCl was used as a vehicle for the renal function markers, a salt load was imposed by infusion of 1 M NaCl. The hypertonic NaCl infusion resulted in increases in glomerular filtration rate (GFR), effective renal blood flow (ERBF), and urine flow rate (V), whereas filtration fraction decreased. Haematocrit was reduced and plasma osmolality, sodium, chloride and potassium concentrations increased. Plasma arginine vasotocin (PAVT) levels increased from 31.4±2.3 pg·ml-1 during the control infusion to 56.0±1.7 pg·ml-1 following a salt load of 12 mmol Nacl·kg-1 The sensitivity of release of AVT was 0.69±0.11 pg·ml-1 per mosmol·kg-1. The concentrations of Na and Cl in urine increased, whereas urine osmolality and potassium concentration decreased. The expansion of the extracellular fluid volume induced by the salt loading would tend to suppress the release of AVT, whereas the osmotic stimulus would provide a stimulus for the release of AVT. In this study, GFR, ERBF and ERPF increased at the same time as PAVT increased.Abbreviations AVP arginine vasopressin - AVT arginine vasotocin - ERBF effective renal blood flow - ERPF effective renal plasma flow - GFR glomerular filtration rate - Pavt plasma arginine vasotocin concentration - PAH paraaminohippuric acid - SEM standard error of mean - SNGER single nephron glomerular filtration rate - U/P urine to plasma ratio - V urine flow rate  相似文献   

2.
The effects of dehydration and hemorrhage on plasma ionic, osmotic, and antidiuretic hormone (arginine vasotocin) concentrations and of hemorrhage on salt gland secretion and glomerular filtration rate were evaluated in glaucous-winged gulls, Larus glaucescens. Dehydration for 24 h did not affect plasma ionic, osmotic or arginine vasotocin concentrations; 72 h dehydration significantly elevated plasma osmolality, plasma sodium and chloride concentrations, and plasma arginine vasotocin concentration, but did not affect plasma potassium concentration. Constant infusion of 0.8 mol·l-1 NaCl increased plasma arginine vasotocin concentration and produced salt gland secretion in seven gulls; four secreted well, while three secreted less well. Removal of 20% blood volume during saline infusion immediately reduced (P<0.001) salt gland secretion rate in all gulls. After bleeding, good secretors maintained glomerular filtration rate and urine flow rate; the poorer secretors increased glomerular filtration rate and became diuretic. Blood replacement returned salt gland secretion rate to the prebleeding level (P<0.05) without affecting salt gland secretions sodium concentration in gulls which secreted well, but did not restimulate salt gland secretion in gulls which secreted poorly. Reinfusion of blood had no effect on glomerular filtration rate. Bleeding and blood replacement did not affect plasma arginine vasotocin concentration.Abbreviations AVT arginine vasotocin - ECF extracellular fluid - ECFV extracellular fluid volume - EDTA ethylenediaminetetra-acetate - EWL evaporative water loss - GFR glomerular filtration rate - Hct hematocrit - LB large blood sample - [Na+]pl plasma sodium concentration - Osmpl plasma osmolality - PEG polyethylene glycol - RH relative humidity - RIA radioimmunoassay - SB small blood sample - SGS salt gland secretion - T a ambient temperature - TFA trifluoroacetic acid - UFR urine flow rate  相似文献   

3.
Summary Renal function was measured in an Australian parrot, the galah (Cacatua roseicapilla), which is distributed across the most arid regions of the continent. Renal function was assessed by the constant infusion technique in hydrated galahs, and in both hydrated and dehydrated birds by means of osmotic minipumps. The glomerular filtration rate (GFR) of the galah is similar to calculated values for a bird of its size. However, effective renal plasma flow tended to be low and therefore filtration fraction was high. Water deprivation for a period of 5 days caused a decrease in body weight and an increase in plasma osmolality and haematocrit. The GFR declined steadily such that weight-specific GFR on the fifth day of water deprivation was 68% of control values. The water deprivation produced a 2.6-fold elevation of plasma arginine vasotocin (AVT) levels, with an overall sensitivity of release of AVT of 0.16±0.02 pg·ml-1 per mOsm·kg-1. The galah possesses renal mechanisms which enable it to conserve significant amounts of water during times of water stress.Abbreviations AVT arginine vasotocin - EDTA ethylene diamine tetra-acetate - GFR glomerular filtration rate - P AVT plasma arginine vasotocin - PAH para-amino hippuric acid - SNGFR single nephron glomerular filtration rate  相似文献   

4.
The osmolality and concentrations of Na, K, Cl and the hormones arginine vasotocin (AVT), prolactin, aldosterone and corticosterone were measured in plasma as functions of time in relation to oviposition, changing NaCl content of the diet, and feeding-inanition. AVT was significantly increased immediately after oviposition (but not during the hour before) with a calculated average value of 38.0 +/- 4.1 pg/ml at oviposition. A moderate increase in concentrations of prolactin and corticosterone were observed immediately after oviposition. Oviposition was not associated with detectable changes in plasma osmolality (and electrolyte concentrations) nor with the concentration of aldosterone. After a sudden change from a high NaCl diet to a low NaCl diet the plasma osmolality and concentrations of NaCl, AVT and prolactin reached new stable levels in 24 hr, whereas the plasma aldosterone concentration required more than 4 days to reach a steady level. After resalination plasma aldosterone was suppressed in less than 8 hr. Both osmolality and concentrations of AVT and prolactin showed transient overshoots during the first 24 hr. NaCl depletion resulted in a transient increase of corticosterone.  相似文献   

5.
A. Chapdelaine  A. Lanthier 《CMAJ》1963,88(24):1184-1192
Observations are presented on two patients with chronic compulsive polydipsia who showed a relative defect in renal concentrating capacity. After excluding all possible metabolic and renal causes of hyposthenuria and after obtaining normal kidney biopsies, both patients were studied in metabolic balance on a constant diet under the following conditions: (a) dehydration (loss of 3-5% body weight), (b) water loading and response to hypertonic saline, and (c) water loading and response to intravenous vasopressin (Pitressin). Throughout these studies the following parameters were observed: plasma and urine osmolality, glomerular filtration rate (inulin), renal plasma flow (P.A.H.), osmolar clearance and clearance of free water. In both patients the concentration defect was not related to variations in glomerular filtration rate or osmotic load. There was no correlation between the degree of hypoosmolality and the renal concentrating defect. Contrary to reports from other laboratories, restriction of water intake and chronic administration of intramuscular vasopressin did not correct the concentration defect.  相似文献   

6.
The small marsupial Antechinus stuartii experiences a synchronised life cycle that culminates in complete male mortality (within 3 weeks) following the 1 week mating period in mid-August (late winter). There are pronounced physiological changes in male A. stuartii over the life cycle and renal function was assessed for correlation with these changes. Glomerular filtration rate and urine and plasma electrolytes were determined in male and female A. stuartii in February, May, July and August. Females showed little change in glomerular filtration rate, except for pre-mating values in August which decreased. In contrast, glomerular filtration rate of males decreased significantly in July and August. Plasma sodium and chloride levels were higher in males than females and were higher in animals in July and August than in February and May. Plasma potassium levels dropped in both males and females in July and August. Plasma osmolality was higher in animals in February compared to animals from May and August. However, there were no significant sex or seasonal differences in urine electrolytes, although urea concentration was higher in females than males. Urine osmolality was higher in both sexes in July and August. There were no significant differences in total excretory rates of sodium, potassium or chloride between sexes or between seasons. Many of the alterations in renal function are correlated with known physiological and hormonal profiles in A. stuartii. This is the first observation of seasonal changes in glomerular filtration rate that are unrelated to dietary and water stresses. Accepted: 8 September 1997  相似文献   

7.
Changes in blood composition, renal function, aldosterone and antidiuretic hormone (ADH) concentrations were investigated in 10 untrained male subjects when swimming (60 min at a heart rate of about 155 beats.min-1, water temperature 28 degrees C) and during the subsequent 3 h in a sitting position. Many specific effects of either exercise or immersion were abolished or attenuated; no significant changes in plasma aldosterone, [ADH], [K+], [Cl-], or of urinary volume, glomerular filtration rate, free water or osmolar clearance were observed. The urine was diluted resulting in lowered [Na+]. In blood some quantities which are only slightly influenced by immersion increased during swimming ([Na+], [Lac-], [H+], osmolality, [creatinine]). Exercise induced plasma volume loss, calculated from increasing [Hb], was small (110 ml), probably because interstitial fluid enters the vascular space during the initial phase of immersion. One might anticipate that the training effects on fluid and electrolyte metabolism and circulation are different when swimming and when performing endurance sports on land.  相似文献   

8.
The Japanese quail drinks water vigorously after water deprivation, haemorrhage and administration of hypertonic saline solution. Most avian species responded to angiotensin II (AII) by drinking, but carnivorous birds and those originating in arid regions were insensitive. The receptive sites for AII were the subfornical organ (SFO) and the preoptic area (POA) in the Japanese quail. Catecholaminergic fibers proceed from the POA to the SFO. Dipsogenic information generated by AII at the POA is transferred to the SFO through the catecholaminergic nerve fibres. Plasma AII increased following dehydration and haemorrhage and returned to a normal level immediately after rehydration. Following dehydration, arginine vasotocin, aldosterone and corticosterone increased in plasma as well as AII. A single intraperitoneal injection of AII induced increases of arginine vasotocin, aldosterone and corticosterone in plasma. It seems that AII functions as a trigger for release of these other hormones during dehydration.  相似文献   

9.
Renal responses were quantified in northern elephant seal (Mirounga angustirostris) pups during their postweaning fast to examine their excretory capabilities. Pups were infused with either isotonic (0.9%; n = 8; Iso) or hypertonic (16.7%; n = 7; Hyper) saline via an indwelling catheter such that each pup received 3 mmol NaCl/kg. Diuresis after the infusions was similar in magnitude between the two treatments. Osmotic clearance increased by 37% in Iso and 252% in Hyper. Free water clearance was reduced 3.4-fold in Hyper but was not significantly altered in Iso. Glomerular filtration rate increased 71% in the 24-h period after Hyper, but no net change occurred during the same time after Iso. Natriuresis increased 3.6-fold in Iso and 5.3-fold in Hyper. Iso decreased plasma arginine vasopressin (AVP) and cortisol acutely, whereas Hyper increased plasma and excreted AVP and cortisol. Iso was accompanied by the retention of water and electrolytes, whereas the Hyper load was excreted within 24 h. Natriuresis is attributed to increased filtration and is independent of an increase in atrial natriuretic peptide and decreases in ANG II and aldosterone. Fasting pups appear to have well-developed kidneys capable of both extreme conservation and excretion of Na(+).  相似文献   

10.
The hypothesis that increases in plasma sodium induce natriuresis independently of changes in body fluid volume was tested in six slightly dehydrated seated subjects on controlled sodium intake (150 mmol/day). NaCl (3.85 mmol/kg) was infused intravenously over 90 min as isotonic (Iso) or as hypertonic saline (Hyper, 855 mmol/l). After Hyper, plasma sodium increased by 3% (142.0 +/- 0.6 to 146.2 +/- 0.5 mmol/l). During Iso a small decrease occurred (142.3 +/- 0.6 to 140.3 +/- 0.7 mmol/l). Iso increased estimates of plasma volume significantly more than Hyper. However, renal sodium excretion increased significantly more with Hyper (291 +/- 25 vs. 199 +/- 24 micromol/min). This excess was not mediated by arterial pressure, which actually decreased slightly. Creatinine clearance did not change measurably. Plasma renin activity, ANG II, and aldosterone decreased very similarly in Iso and Hyper. Plasma atrial natriuretic peptide remained unchanged, whereas plasma vasopressin increased with Hyper (1.4 +/- 0.4 to 3.1 +/- 0.5 pg/ml) and decreased (1.3 +/- 0.4 to 0.6 +/- 0.1 pg/ml) after Iso. In conclusion, the natriuretic response to Hyper was 50% larger than to Iso, indicating that renal sodium excretion may be determined partly by plasma sodium concentration. The mechanism is uncertain but appears independent of changes in blood pressure, glomerular filtration rate, the renin system, and atrial natriuretic peptide.  相似文献   

11.
A 32-year-old man was diagnosed as having pseudo-Bartter syndrome due to surreptitious habitual vomiting and to maldigestion related to decayed teeth. His chief complaints were muscle pain and weakness. In this case, metabolic alkalosis, hypokalemia, hypochloremia, increased plasma renin activity and aldosterone levels were noticed with marked decreases in urinary chloride excretion. Creatinine clearance (GFR) and renal plasma flow (RPF) were also decreased. Blood pressure was normal, but the pressor response to angiotensin II was attenuated. Before treatment with 0.9% saline infusion, plasma vasopressin (AVP) was not suppressed sufficiently by lowering the plasma osmolality (Posm) with an oral water load (WL), but it normally responded to a rise in Posm due to hypertonic saline infusion. Moreover, plasma AVP was normally suppressed by WL after the replenishment of saline. Plasma atrial natriuretic peptide (ANP) was low before WL, but increased normally in response to WL. However, inconsistent with the normal response in this case, decreases in plasma AVP failed to dilute urinary osmolality and to increase urine flow, irrespective of the levels of plasma ANP. These results indicate that chronic inanition due to surreptitious vomiting causes impaired renal diluting ability through decreases in GFR and RPF, irrespective of the levels of plasma AVP and ANP.  相似文献   

12.
Plasma osmolality alters control of sympathetic activity and heart rate in animal models; however, it is unknown whether physiological increases in plasma osmolality have such influences in humans and what effect concurrent changes in central venous and/or arterial pressures may have. We tested whether physiological increases in plasma osmolality (similar to those during exercise dehydration) alter control of muscle sympathetic nerve activity (MSNA) and heart rate (HR) in humans. We studied 17 healthy young adults (7 women, 10 men) at baseline and during arterial pressure (AP) transients induced by sequential injections of nitroprusside and phenylephrine, under three conditions: control (C), after 1 ml/kg intravenous hypertonic saline (HT1), and after 2 ml/kg hypertonic saline (HT2). We continuously measured HR, AP, central venous pressure (CVP; peripherally inserted central catheter) and MSNA (peroneal microneurography) in all conditions. Plasma osmolality increased from 287 +/- 1 mosmol/kg in C to 290 +/- 1 mosmol/kg in HT1 (P < 0.05) but did not increase further in HT2 (291 +/- 1 mosmol/kg; P > 0.05 vs. C). Mean AP and CVP were similar between C and HT1, but both increased slightly in HT2. HR increased slightly but significantly during both HT1 and HT2 vs. C (P < 0.05). Sensitivity of baroreflex control of MSNA was significantly increased vs. C in HT1 [-7.59 +/- 0.97 (HT1) vs. -5.85 +/- 0.63 (C) arbitrary units (au).beat(-1).mmHg(-1); P < 0.01] but was not different in HT2 (-6.55 +/- 0.94 au.beat(-1).mmHg(-1)). We conclude that physiological changes in plasma osmolality significantly alter control of MSNA and HR in humans, and that this influence can be modified by CVP and AP.  相似文献   

13.
1. Packed cell volume (PCV), blood glucose, total plasma proteins (TPP) and plasma electrolytes, osmolality, cortisol and aldosterone alterations produced by transport and racing, were investigated in race horses. 2. Plasma cortisol, sodium and blood glucose, found after transport, were higher, while aldosterone was lower than control levels. 3. After racing, PCV, blood glucose, TPP and plasma cortisol, sodium and osmolality were higher than control, while chloride diminished and aldosterone returned to control values. 4. These results demonstrate that transport and racing are different kinds of stressors, suggesting that the sympathetic system and hypophysis-suprarenal cortex axis have a dissimilar contribution to the physiological response.  相似文献   

14.
Renal function and osmoregulation were studied in bobwhite quail (Colinus virginianus) raised with unrestricted water (chronically unrestricted group) or restricted water (chronically restricted group). There was no difference in urine concentrating ability between adult and juvenile (3.5 or 7.5 week-old) quail. A filtration marker (polyethylene glycol) was infused into adult quail via osmotic minipumps and responses to the following regimens studied: ad libitum water intake, short-term (4-day) water restriction, and acute (1-day) dehydration (withdrawal of all drinking water). Chronically restricted quail had higher urine-to-plasma ratios of polyethylene glycol and lower urine flow rates during short-term restriction. A greater proportion of the reduction in urine flow rate during dehydration was attributable to enhanced tubular reabsorption, rather than reduced rates of filtration, in chronically restricted than in chronically unrestricted birds. Chronically restricted birds also had higher maximum urine-to-plasma ratios of polyethylene glycol (but not higher urine osmolality). These differences occurred in the face of arginine vasotocin concentrations that were not different in the two groups of birds (approximately 15 pg·ml-1 during hydration, and 45 pg·ml-1 during water restriction or dehydration). These observations suggest that chronically restricted quail have an enhanced responsiveness of tubular reabsorption to dehydration, a finding consistent with previous observations of tubule hypertrophy and hyperplasia in these birds (Goldstein and Ellis 1991). Despite this, no difference was found in medullary cAMP levels, either basal or arginine vastotocin-or forskolin-stimulated, in the two groups. When given water ad libitum, chronically restricted quail drank copiously (more than two times the drinking rate of chronically unrestricted birds rehydrating from acute dehydration or short-term water restriction), but glomerular filtration rate, hematocrit, and plasma osmolality did not differ in the two groups under this condition; chronically restricted quail excreted the excess water consumed during rehydration in a copious urine accomplished by reduced tubular water reabsorption.Abbreviations ADH antidiuretic hormone - AVT arginine vasotocin - mb body mass - cAMP cyclic adenosine-monophosphate - DEH birds raised with restricted water intake - dpm decays per minute - ECF extracellular fluid - ECFV extracellular fluid volume - E PEG total rate of polyethylene glycol excretion - GFR glomerular filtration rate - Hct hematocrit - HYD birds raised with unrestricted water intake - PEG polyethylene glycol - P osm plasma osmolality - P PEG plasma concentration of polyethylene glycol - U PEG urine concentration of polyethylene glycol - (U/P)PEG urine-to-plasma ratio concentration of polycthylene glycol - V urine flow rate  相似文献   

15.
Conscious Merino ewes were given an intravenous hypertonic sodium chloride load of 4 mmol.min-1 for 100 min. This resulted in increases in urine flow, sodium and potassium excretion and plasma sodium concentration and osmolality. Urinary vasopressin output and solute-free water reabsorption increased and plasma renin activity declined. Renal plasma flow and glomerular filtration rate (GFR) rose, as did the solute clearance. The change in urinary osmolality was related to the initial urine osmolality such that when the initial urine osmolality was high the urine became more dilute, and vice versa. Tubular sodium reabsorption increased but the fractional reabsorption rate fell. It is suggested that the increase in GFR was at least partly due to the increase in AVP and that the electrolyte loss can be accounted for by the increase in GFR without necessarily involving AVP or other hormonal effects at the tubular level.  相似文献   

16.
The effects of hydromineral hormones and catecholamines on renal concentrating ability at different hydration states were examined in five male volunteers while they performed three trials. Each of these trials comprised a 60-min exercise bout on a treadmill (at 50% of maximal oxygen uptake) in a warm environment (dry bulb temperature, 35°C; relative humidity, 20–30%). In one session, subjects were euhydrated before exercise (C). In the two other sessions, after thermal dehydration (loss of 3% body mass) which markedly reduced plasma volume (PV) and increased plasma osmolality (osmpl), the subjects exercised either not rehydrated (Dh) or rehydrated (Rh) by drinking 600 ml of mineral water before and 40 min after the onset of exercise. During exercise in the Dh compared to C state, plasma renin, aldosterone, arginine vasopressin (AVP), noradrenaline and adrenaline concentrations were increased (P < 0.05). A reduction in creatinine clearance and urine flow was also observed (P < 0.05) together with a decrease in urine osmolality, osmolar clearance and sodium excretion, while free water clearance increased (P < 0.05). However, compared to Dh, Rh partially restored PV and osmpl and induced a marked reduction in the time courses of both the plasma AVP and catecholamine responses (P < 0.05). Values for renal water and electrolyte excretion were intermediate between those of Dh and C. Plasma atrial natriuretic peptide presented similar changes whatever the hydration state. These results demonstrate that during moderate exercise in the heat, renal concentrating ability is paradoxically reduced by prior dehydration in spite of high plasma AVP levels, and might be the result of marked activation of the sympatho-adrenal system. Rehydration, by reducing this activation, could partially restore the renal concentrating ability despite the lowered plasma AVP. Accepted: 23 April 1997  相似文献   

17.
In birds, arginine vasotocin (AVT) and mesotocin (MT) are the neurohypophyseal hormones. AVT is known to be an avian antidiuretic hormone and is released from the neurohypophysis by dehydration or hyperosmotic stimulation. The purpose of this study was to determine whether the mechanism of AVT synthesis is related to the mechanism of hormone release from the neurohypophysis. Four-day-old chicks received an AVT antisense oligodeoxynucleotide (ODN) injection into the cerebral ventricle (icv). Following antisense administration, the chicks received hypertonic saline stimulation. Plasma levels of AVT and MT were measured by radioimmunoassays. In control birds, a hypertonic saline injection resulted in the increase of plasma AVT level. The administration of a high dose (50 microg) of antisense ODN inhibited the increase of plasma AVT level induced by the hypertonic saline stimulation. Plasma levels of MT did not change with the administration of hypertonic saline or antisense ODN. These results suggest that the mechanisms that regulate the secretion of AVT from the neurohypophysis may be coupled to the mechanisms that regulate the synthesis of AVT.  相似文献   

18.
The effects of intravenous infusion of ornithine-vasopressin (OVP) and desamino-D-arginine-vasopressin (dDAVP) were studied in normal and hydrated Merino sheep. In normal sheep, OVP resulted in a diuresis, increased urinary sodium and potassium excretion, and a fall in the plasma potassium concentration. Renal plasma flow remained constant but glomerular filtration rate and filtration fraction rose markedly. dDAVP in normal sheep was antidiuretic, but its only significant effect was a small decrease in plasma osmolality. In the hydrated sheep OVP was antidiuretic and resulted in increased urinary excretion of sodium and potassium, and a fall in the plasma potassium level. Renal plasma flow fell, but glomerular filtration and filtration fraction tended to rise. dDAVP in the hydrated sheep was also antidiuretic but urinary sodium and potassium excretion was reduced. Renal plasma flow and glomerular filtration fell, with a small decrease in filtration fraction. These results suggest that the diuretic effect in normal sheep and the electrolyte-excreting effects in both normal and hydrated sheep of OVP are related to the increase in glomerular filtration, which in turn is dependent on the vasopressor activity of the hormone. The increase in glomerular filtration caused by OVP is due to an increase in the filtration fraction of an unchanged renal plasma flow, which could be brought about by an increase in renal efferent arteriolar tone. The effects of hydration of the sheep were the conventional increased urine flow, decreased urine osmolality and decreased solute-free water reabsorption. Sodium and potassium excretion rose slightly and plasma osmolality fell. Renal plasma flow and glomerular filtration both increased with little change in filtration fraction. These effects could be brought about by suppression of endogenous vasopressin and a decrease in both afferent and efferent renal arteriolar tone.  相似文献   

19.
Renal function in red wattlebirds in response to varying fluid intake   总被引:1,自引:1,他引:0  
Red wattlebirds (Anthochaera carunculata) are among the more nectarivorous of the Australian honeyeaters (family Meliphagidae). As such, they potentially ingest large and dilute fluid loads as food, and they produce copious dilute urine in the field. We examined in the laboratory the renal mechanisms by which such fluid loads are processed. Wattlebirds received one of three liquid diets [a mix of honey, water, and Complan (Boots) complete dietary supplement] of varying concentration (250, 1000, and 1750 mmol/kg, Na+/K+ concentrations of 4/4, 12/15, and 23/30 mmol/l, respectively). We measured renal function via infusion of a filtration marker (14C-polyethylene glycol) from osmotic minipumps implanted intraperitoneally. Wattlebirds consumed volumes of the three diets sufficient to provide nearly equal caloric intakes (approximately 200 kJ/day), and as a consequence had water turnover rates varying from 30 to 200 ml/day (approximately 50–335% of total body water per day). Renal function in the morning, before feeding, did not differ among diet groups (glomerular filtration rate =18 ml/h, urine flow rate =0.4 ml/h). In the afternoon, after feeding, urine flow did vary, from 3 ml/h in birds on the most concentrated diet to 6 ml/h on the most dilute. This was accomplished by varying the rate of tubular reabsorption of water (from a high of >90% on the most concentrated diet to a low of just over 70% on the most dilute), with little variation in the rate of glomerular filtration (mean ∼23 ml/h). Comparisons between dietary intakes and urinary outputs of water and electrolytes suggest that not all dietary water was absorbed from the gut, but that there was significant post-renal reabsorption of Na+. The reduced fractional water reabsorption on the dilute diet was accompanied by a decrease in the circulating concentration of arginine vasotocin (from >4 pg/ml in birds on the two more concentrated diets to <1 pg/ml on the most dilute diet). In contrast, concentrations of aldosterone (10–20 pg/ml) did not differ among diets. Perhaps in consequence, renal fractional absorption of Na+ also did not differ, and so birds on the dilute diet, with their higher urine flows, had higher rates of Na+ excretion and suffered a decreased concentration of Na+ in the plasma. Accepted: 14 January 1988  相似文献   

20.
Plasma atrial natriuretic factor concentrations in Rhode Island red hens averaged 72.1±6.9 pg·ml-1, range 33.4–136.0 pg·ml-1. The intravenous infusion of isotonic saline containing 3% dextran for 2 h produced no significant changes in plasma osmotic or electrolyte concentrations; however, haematocrit changes indicated vascular expansions of 14.4% after 1 h and 21.3% after 2 h and plasma atrial natriuretic factor concentrations were elevated by 190% and 257%, respectively. The intravenous infusion of chicken atrial natriuretic factor at rates of 10, 25, 50 and 100 ng·kg-1·min-1 for 20 min produced levels of plasma atrial natriuretic factor that were directly related to the infusion rate and which, in birds undergoing a steady-state diuresis/natriuresis driven by the intravenous infusion of isotonic saline at 1 ml·min-1, produced dose-dependent increases of 19, 26, 38 and 55% in urine flow rate and of 8, 30, 49 and 77% in sodium excretion. Potassium excretion was significantly increased only at the two highest atrial natriuretic factor infusion rates. The observed correlation between plasma atrial natriuretic factor concentration and vascular volume together with the atrial natriuretic factor-induced modulation of renal salt and water elimination is consistent with the concept that in the chicken this peptide has a physiological role as a regulatory hormone in volume homeostasis.Abbreviations AII angiotensin II - ANF atrial natriuretic factor - AVT arginine vasotocin - BV blood volume - chANF chicken atrial natriuretic factor - CHE chicken heart extract - ECF extracellular fluid - EDTA ethylenediaminetetra-acetate - Hct haematocrit - i.v. intravenous - PCR plasma clearance rate - PRA plasma renin activity - RIA radioimmunoassay  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号