首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effects of somatostatin (SOM) and cholecystokinin octapeptide (CCK-8) on basal and potassium-evoked release of neurotransmitter amino acids were investigated in slices of rat caudate nucleus (CN) and, for comparison, cerebral cortex (CX). Endogenous aspartate (Asp), glutamate (Glu), glycine (Gly), and gamma-aminobutyric acid (GABA) were measured by high performance liquid chromatography. In both CN and CX, potassium (5-55 mM) produced a concentration-dependent increase in the release of Asp, Glu, Gly, and GABA in the presence of extracellular Ca2+. CCK-8 (1 microM) stimulated in CN the basal and K+-evoked release of Gly to 231% and 160% of control, respectively; this effect was blocked by sulpiride (SULP), a dopamine receptor antagonist. In contrast, SOM (1 microM) inhibited the K+-evoked release of Glu in CN by 26%, an effect that was not blocked by SULP. SOM and CCK-8 did not significantly affect the basal or K+ (35 mM)-evoked release of other amino acids in the CN or of any amino acids in CX. The results indicate that: CCK-8 facilitation of Gly release is dependent of Gly release is dependent on dopamine receptor activation, whereas the inhibition by SOM of Glu release is not: and the effects of SOM and CCK-8 are specific with respect to the brain region affected.  相似文献   

2.
We studied the in vitro and in vivo influence of physiologically relevant zinc concentrations on the thyrotropin function both at the pituitary and hypothalamic level. Zinc gluconate (Zn Glu) concentrations from 5 to 100 microM decreased basal TSH release from anterior pituitary gland in vitro, but did not affect TSH-stimulated release by TRH, cAMP or high K+ concentrations. Zn Glu altered neither the basal nor stimulated production of TRH by hypothalami in vitro. In vivo brain third ventricle injection of Zn Glu decreased serum TSH 30-60 min after injection. The ability of physiological concentrations of zinc to influence TSH secretion both in vitro and in vivo suggest that this trace element might be involved in the regulation of thyrotropin function.  相似文献   

3.
Hypoxia at birth is a major source of brain damage and it is associated with serious neurological sequelae in survivors. Alterations in the extracellular turnover of glutamate (Glu) and acetylcholine (ACh), two neurotransmitters that are essential for normal hippocampal function and learning and memory processes, may contribute to some of the neurological effects of perinatal hypoxia. We set out to determine the immediate and long-lasting effects of hypoxia on the turnover of these neurotransmitters by using microdialysis to measure the extracellular concentration of Glu and ACh in hippocampus, when hypoxia was induced in rats at postnatal day (PD) 7, and again at PD30. In PD7 rats, hypoxia induced an increase in extracellular Glu concentrations that lasted for up to 2.5 h and a decrease in extracellular ACh concentrations over this period. By contrast, perinatal hypoxia attenuated Glu release in asphyxiated rats, inducing a decrease in basal Glu levels when these animals reached PD30. Unlike Glu, the basal ACh levels in these animals were greater than in controls at PD30, although ACh release was stimulated less strongly than in control animals. These results provide the first evidence of the initial and long term consequences of the hypoxia on Glu and ACh turnover in the brain, demonstrating that hypoxia produces significant alterations in hippocampal neurochemistry and physiology.  相似文献   

4.
In vivo electrochemical measurements, involving chronoamperometric recordings using monoamine-selective Nafion-coated electrodes, were used to study the effects of locally applied cocaine (50-500 micromolar barrel concentrations) on dopamine (DA) nerve terminals in the neostriatum of the anaesthetized rat. Local application of cocaine did not elicit detectable increases in basal levels of extracellular DA. However, locally applied cocaine significantly augmented the concentration of DA detected following a potassium (K+)-evoked depolarization. Data obtained with a new high-speed chronoamperometric recording technique further support that DA is the predominant species detected electrochemically following potassium-evoked depolarizations both before and after local application of cocaine. Unlike other locally applied uptake inhibitors that we have studied, cocaine failed to augment the time dynamics of released DA. In addition, large doses of the highest concentration of cocaine caused an attenuation of K+-evoked DA release, presumably due to cocaine's local anaesthetic properties. These data suggest that cocaine elevates synaptic levels of DA, but in a manner that is not identical to other potent monoamine uptake inhibitors.  相似文献   

5.
Abstract: The presynaptic regulation of amino acid release from nerve terminals was investigated using synaptosomes prepared from the rat spinal cord. The basal releases of endogenous glutamate (Glu), aspartate (Asp), and γ-amino-butyric acid (GABA) were 34.6, 21.5, and 10.0 pmol/min/mg of protein, respectively. Exposure to a depolarizing concentration of KCl (30 m M ) evoked 2.7-, 1.5-, and 2.9-fold increases in Glu, Asp, and GABA release, respectively. Clonidine reduced the K+-evoked overflow of Glu to 56% of the control overflow with a potency (IC50) of 17 n M , but it did not affect K+-evoked overflow of Asp, GABA, and their basal releases. Similarly, noradrenaline inhibited the K+-evoked overflow of Glu, although phenylephrine and isoproterenol showed no effect. The inhibitory effect of clonidine was counteracted by α2-adrenoceptor antagonists, rauwolscine, yohimbine, and idazoxan, regardless of the imidazoline structures. Because Glu is considered a neurotransmitter of primary afferents that transmit both nociceptive and nonnociceptive stimuli in the spinal cord, these data suggest that part of Glu release may be regulated by the noradrenergic system through α2 adrenoceptors localized on the primary afferent terminals.  相似文献   

6.
Potentiation of the excitatory response to L-glutamate (Glu) by L-aspartate (Asp), similar to that which has been described at the crustacean neuromuscular junction, is observed in Aplysia neurons which are glutamate sensitive. Potentiation of the inhibitory responses to ionophoretically applied Glu in neurons preconditioned with Asp permits experiments which serve to differentiate among four hypotheses previously proposed to explain the underlying mechanism of the phenomenon. The potentiation is inhibited by cooling (Q10 = 1.3 +/- 0.2) and is blocked in Na+-free seawater, where the response to Glu applied alone is increased in both amplitude and duration. These results are most consistent with the view that Glu is normally removed from the extracellular medium through an active reuptake process which is Na+ dependent, is slightly temperature sensitive, and may be blocked by Asp. Potentiation of the excitatory response to L-glutamate (Glu) by L-aspartate (Asp) has been previously described at the crustacean neuromuscular junction (Kravitz et al., 1970; Nistri and Constanti, 1979). This potentiation has been attributed to an Asp-induced change in conformation of the Glu receptor, thereby increasing its affinity for Glu (Shank and Freeman, 1975); suppression of the rate of desensitization of the Glu receptor induced by Asp (Dudel, 1977); blockade by Asp of a Glu reuptake process (Crawford and McBurney, 1977); and release, triggered by Asp, of a bound store of Glu (Constanti and Nistri, 1978).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Opioid agonists specific for the , , and opioid receptor subtypes were tested for their ability to modulate potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity from guinea pig hippocampal mossy fiber synaptosomes. The opioid agonists U-62,066E and (–) ethylketocyclazocine, but not the agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAGO) nor the agonist [D-Pen2,5]enkephalin (DPDE), inhibited the potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity. U-62,066E, but not DAGO or DPDE, also inhibited the potassium-evoked rise in mossy fiber synaptosomal cytosolic Ca2+ levels, indicating a possible mechanism for agonist inhibition of transmitter release. DAGO and DPDE were found to be without any effect on cytosolic Ca2+ levels or transmitter release in this preparation. The U-62,066E inhibition of the potassium-evoked rise in synaptosomal cytosolic Ca2+ levels was partially attenuated by the opioid antagonist quadazocine and insensitive to the -opioid specific antagonist ICI 174,864 and the opioid-preferring antagonists naloxone and naltrexone. Quadazocine also reversed U-62,066E inhibition of the potassium-evoked release of L-glutamate, but not dynorphin B-like immunoreactivity. These results suggest that opioid agonists inhibit transmitter release from mossy fiber terminals through both opioid and non- opioid receptor mediated mechanisms.  相似文献   

8.
Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here, we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine K(m) and V(max) for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH.  相似文献   

9.
Depolarizing stimuli increase the release of transmitter substances from cultured PC12 pheochromocytoma cells and reaggregate cultures of mouse mesencephalic dopamine neurones. We measured the stimulated release of (3H) norepinephrine and (3H) dopamine from these systems respectively. In the cultured mouse dopaminergic neurones, several organic calcium channel blockers including nitrendipine, D-600, verapamil and diltiazem were unable to inhibit potassium-evoked transmitter release. However, release was blocked by 3 mM cobalt. The novel dihydropyridine calcium channel agonist BAY K8644 also had no effect on basal or evoked dopamine release. In contrast, BAY K8644 greatly stimulated the potassium-evoked release of (3H) norepinephrine from PC12 cells. The BAY K8644 enhanced release could be blocked by the dihydropyridine antagonist nitrendipine. These results indicate that while stimulus-secretion coupling in the PC12 cell line involves dihydropyridine sensitive calcium channels, this is not the case in primary cultured neurones.  相似文献   

10.
Abstract: Hippocampal thyrotropin-releasing hormone (TRH) release was examined after seizures were induced by electroconvulsive shock (ECS). Rat hippocampal slices taken 12, 24, or 48 h after 3 days of alternate-day ECS treatment or sham-ECS treatment were stimulated with potassium with or without calcium in a superfusion system containing in-line charcoal adsorbent to concentrate TRH. Released TRH and tissue TRH were measured by radioimmunoassay. The TRH content of hippocampal slices was increased fivefold over sham-ECS levels 12, 24, and 48 h after ECS, but this was not associated with an increase in basal TRH release. Potassium-stimulated TRH release was significantly elevated over basal release 12, 24, and 48 h after ECS. Potassium-stimulated calcium-dependent TRH release increased linearly after ECS, reaching its highest level 48 h after seizure. Thus, although enhanced calcium-dependent TRH release was associated with elevated tissue levels, this relationship was not proportional in that tissue TRH was elevated to the same extent at all times after ECS, whereas potassium-evoked calcium-dependent TRH release increased gradually over time after seizure. These results suggest that postictal elevations in TRH are associated with an enhanced capacity for release that develops as a result of a time-dependent shift of TRH from a storage compartment to a readily releasable pool. The observed elevation in stimulated TRH release may be relevant to seizure-induced modulation of TRH receptors in vivo.  相似文献   

11.
Zuo DY  Zhang YH  Cao Y  Wu CF  Tanaka M  Wu YL 《Life sciences》2006,78(19):2172-2178
The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.  相似文献   

12.
Glutamyl-tRNA synthetase (GluRS) is one of the aminoacyl-tRNA synthetases that require the cognate tRNA for specific amino acid recognition and activation. We analyzed the role of tRNA in amino acid recognition by crystallography. In the GluRS*tRNA(Glu)*Glu structure, GluRS and tRNA(Glu) collaborate to form a highly complementary L-glutamate-binding site. This collaborative site is functional, as it is formed in the same manner in pretransition-state mimic, GluRS*tRNA(Glu)*ATP*Eol (a glutamate analog), and posttransition-state mimic, GluRS*tRNA(Glu)*ESA (a glutamyl-adenylate analog) structures. In contrast, in the GluRS*Glu structure, only GluRS forms the amino acid-binding site, which is defective and accounts for the binding of incorrect amino acids, such as D-glutamate and L-glutamine. Therefore, tRNA(Glu) is essential for formation of the completely functional binding site for L-glutamate. These structures, together with our previously described structures, reveal that tRNA plays a crucial role in accurate positioning of both L-glutamate and ATP, thus driving the amino acid activation.  相似文献   

13.
Iloprost (ZK 36374; a stable prostacyclin analogue) increases basal as well as potassium-evoked vasopressin and oxytocin secretion from rat neurointermediate lobes in vitro. This finding suggests a possible regulatory role of endogenous prostacyclin in the release of neurohypophysial hormones.  相似文献   

14.
Sites of synthesis and release patterns of crustacean hyperglycaemic hormone precursor-related peptide (CPRP) were investigated with those of crustacean hyperglycaemic hormone (cHH), in order to determine whether this precursor-related peptide satisfies certain criteria necessary for its definition as a secretable, circulating hormone. Using the edible crab, Cancer pagurus, sites of CPRP synthesis were determined by immunohistochemistry and release patterns of both peptides were determined in vivo and in vitro by radioimmunoassay of haemolymph and eyestalk superfusates. Both peptides were co-released from sinus glands (SGs) following potassium-evoked depolarization of isolated eyestalk preparations. However, stress-evoked in vivo release resulted in apparent non-stoichiometric circulating peptide profiles. This phenomenon is explained by notable differences in clearance rates of the peptides in haemolymph. In contrast to cHH, CPRP is very slowly degraded in vivo. Although CPRP is clearly a circulating peptide, whose release is concomitant with that of cHH, physiologically pertinent roles for this molecule remain to be discovered.  相似文献   

15.
Abstract: Several putative neurotransmitters and metabolites were monitored simultaneously in the extracellular space of neostriatum, substantia nigra, and cortex and in subcutaneous tissue of the rat by in vivo microdialysis. Glutamate (Glu) and aspartate (Asp) were at submicromolar and γ-aminobutyric acid (GABA) was at nanomolar concentrations in all brain regions. The highest concentration of dopamine (DA) was in the neostriatum. Dynorphin B (Dyn B) was in the picomolar range in all brain regions. Although no GABA, DA, or Dyn B could be detected in subcutaneous tissue, Glu and Asp levels were ≈5 and ≈0.4 µM, respectively. Lactate and pyruvate concentrations were ≈200 and ≈10 µM in all regions. The following criteria were applied to ascertain the neuronal origin of substances quantified by microdialysis: sensitivity to (a) K+ depolarization, (b) Na+ channel blockade, (c) removal of extracellular Ca2+, and (d) depletion of presynaptic vesicles by local administration of α-latrotoxin. DA, Dyn B, and GABA largely satisfied all these criteria. In contrast, Glu and Asp levels were not greatly affected by K+ depolarization and were increased by perfusing with tetrodotoxin or with Ca2+-free medium, arguing against a neuronal origin. However, Glu and Asp, as well as DA and GABA, levels were decreased under both basal and K+-depolarizing conditions by α-latrotoxin. Because the effect of K+ depolarization on Glu and Asp could be masked by reuptake into nerve terminals and glial cells, the reuptake blocker dihydrokainic acid (DHKA) or l -trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was included in the microdialysis perfusion medium. The effect of K+ depolarization on Glu and Asp levels was increased by DHKA, but GABA levels were also affected. In contrast, PDC increased only Glu levels. It is concluded that there is a pool of releasable Glu and Asp in the rat brain. However, extracellular levels of amino acids monitored by in vivo microdialysis reflect the balance between neuronal release and reuptake into surrounding nerve terminals and glial elements.  相似文献   

16.
Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulins are post-translationally modified species that differ by a single amino acid at their respective C-termini. We have examined the distribution of these two species by immunofluorescence in proliferating and differentiated cells using antisera specifically reactive with each of the forms. In proliferating PtK1 cells, Tyr tubulin was the predominant form in almost every cytoplasmic microtubule (MT); only a few MTs contained detectable Glu tubulin. In contrast, staining of centrioles and primary cilia of PtK1 cells suggested that Glu tubulin was the predominant form in these stable assemblies of MTs. An examination of the distribution (by immunofluorescence) and relative amount (by immunoblot analysis) of the two forms of tubulin in the stable assemblies of MTs present in cultured neuronal cells (neurites), sperm and tracheal cells (axonemes and basal bodies), and platelets and erythrocytes (marginal bands) revealed that, in general, the MTs in these arrays contained substantially elevated levels of Glu tubulin in comparison with the levels in MTs of cultured cells. The one exception, the marginal band of toad erythrocytes, which contained only Tyr tubulin, demonstrates that an elevated level of Glu tubulin is not an obligate feature of a stable array of MTs. Nonetheless, an elevated level of Glu tubulin may be a useful indicator of stable MTs in differentiated cells. It is important to note that commonly used sources of tubulin (e.g., brain or flagella) necessarily yield tubulin that differs strikingly from tubulin of proliferating cells in its content of Glu tubulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Microdialysis coupled to HPLC is the preferred method for quantification of glutamate (Glu) concentrations, both in normal and pathological conditions. However, HPLC is a time consuming technique that suffers from poor temporal resolution. Here we describe an alternative method to measure glutamate concentrations in small-volume dialysis samples by quantifying hydrogen peroxide released by glutamate oxidase using the Amplex Red method. This system permits continuous automatic sample collection and the detection of a fluorescent reaction product, resorufin, which provides a measure of the glutamate concentration. Quantification can be carried out in small microdialysis samples to allow a temporal resolution of 60 s. Both in vitro and in vivo tests showed that this method was reproducible and reliable, detecting Glu along a linear scale. To validate the proposed method, extracellular Glu concentrations in the rat brain were measured and correlated with electrophysiological activity prior, during and after seizure induction with 4-aminopyridine. This method may be adapted to monitor other biologically active compounds, including acetylcholine and glucose, as well as other compounds that generate hydrogen peroxide as a reaction product and may be used as an alternative to other neurochemical methods.  相似文献   

18.
The aim of this study was to determine whether L-glutamate, a major excitatory transmitter in the cerebral cortex, modulates the proteolytic cleavage of the amyloid precursor protein (APP) in the brain through specific receptor activation. Native rat brain cerebral cortical slices were stimulated either with L-glutamate or various glutamate receptor agonists, and the soluble APP derivatives released into the incubation medium were assayed by Western blot analysis. Immunoprecipitation with specific antibodies revealed that in the medium only secretory forms of APP lacking intact C-terminus were present, whereas in the brain slices both C- and N-terminal intact APP products were detectable. L-glutamate induced the release of secretory APP from cortical slices in a concentration-dependent but biphasic manner, with the highest release at 50 μM L-glutamate and smaller effects at higher glutamate concentrations. To determine whether the effect of L-glutamate is mediated through distinct glutamate receptor subtypes, brain slices were incubated in the presence of various specific glutamate receptor agonists. Activation of the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor with 50 nM (RS)-bromohomoibotenic acid resulted in a reduced release of secretory APP by 17%±3 (P<0.01, one tailed Student's t-test) compared to the incubation without any drug. Stimulation of the metabotropic glutamate receptor with 50 nM (2S,3S,4S)--(carboxycyclopropyl)-glycine (L-CCG-I) led to an enhanced release of secretory APP by 39%±3 (P<0.001), whereas activation of the N-methyl-D-aspartate (NMDA) receptor with 50 nM (1R,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1R,3R)-ACPD) did not significantly change the secretion of APP compared to the incubation without any drug. The data suggest that: (i) cortical glutamatergic neurotransmission is involved in APP metabolism; and (ii) the stimulation of APP cleavage in cerebral cortical brain slices is mainly mediated by the metabotropic but not the NMDA glutamate receptor subtype, whereas the AMPA receptor subtype seems to inhibit the secretory path of APP processing.  相似文献   

19.
Presynaptic actions of kainic acid have been tested on uptake and release mechanisms in synaptosome-enriched preparations from rat hippocampus and goldfish brain. Kainic acid increased in a Ca2+-dependent way the basal release of endogenous glutamate and aspartate from both synaptosomal preparations, with the maximum effect (40-80%) being reached at the highest concentration tested (1 mM). In addition, kainic acid potentiated, in an additive or synergic way, the release of excitatory amino acids stimulated by high K+ concentrations. Kainic acid at 1 mM showed a completely opposite effect on the release of exogenously accumulated D-[3H]aspartate. The drug, in fact, caused a marked inhibition of both the basal and the high K+-stimulated release. Kainic acid at 0.1 mM had no clear-cut effect, whereas at 0.01 mM it caused a small stimulation of the basal release. The present results suggest that kainic acid differentially affects two neurotransmitter pools that are not readily miscible in the synaptic terminals. The release from an endogenous, possibly vesiculate, pool of excitatory amino acids is stimulated, whereas the release from an exogenously accumulated, possibly cytoplasmic and carrier-mediated, pool is inhibited or slightly stimulated, depending on the external concentration of kainic acid. Kainic acid, in addition, strongly inhibits the high-affinity uptake of L-glutamate and D-aspartate in synaptic terminals. All these effects appear specific for excitatory amino acids, making it likely that they are mediated through specific recognition sites present on the membranes of glutamatergic and aspartatergic terminals. The relevance of the present findings to the mechanism of excitotoxicity of kainic acid is discussed.  相似文献   

20.
We sought to establish whether the endogenous opiate-receptor agonist Met-enkephalin (m-ENK) selectively modulates the release of endogenous tyrosine (Tyr) from brain slices prepared from the corpus striatum (CS). Amino acids (AAs) released from slices of CS and, for comparison, cerebral cortex (Cx) were measured by HPLC. Incubation of slices with m-ENK (1-10 microM) increased the basal release of Tyr (up to 293% of control) from CS, but not Cx, whereas other nonneurotransmitter AAs, phenylalanine (Phe) and valine (Val), were unchanged. The release of the putative neurotransmitter AAs glutamate (Glu), taurine (Tau), and glycine (Gly) were similarly increased by 50-150% with m-ENK in slices of CS, but not Cx. The enhanced release of AAs by m-ENK was prevented by removal of extracellular Ca2+ or by preincubation with the opiate receptor antagonist naloxone. Neuronal depolarization by potassium (5-55 mM) in the presence of Ca2+ did not affect the release of Tyr, whereas release of neurotransmitter AAs such as gamma-aminobutyric acid (GABA) were markedly increased. The increase in basal Tyr release by m-ENK was not the result of a decreased uptake of Tyr. Relative to slices, the basal release of Tyr, Phe, and Val from a synaptosomal (P2) preparation of CS was small (8-51%) compared to that of GABA, Gly, Glu, and Tau (49-123%). Nonetheless, m-ENK (10 microM) markedly increased the release of Tyr (to 833%), but not Glu, Gly, and Tau from the P2 fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号