首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secretins, a superfamily of multimeric outer membrane proteins, mediate the transport of large macromolecules across the outer membrane of Gram-negative bacteria. Limited proteolysis of secretin PulD from the Klebsiella oxytoca pullulanase secretion pathway showed that it consists of an N-terminal domain and a protease-resistant C-terminal domain that remains multimeric after proteolysis. The stable C-terminal domain starts just before the region in PulD that is highly conserved in the secretin superfamily and apparently lacks the region at the C-terminal end to which the secretin-specific pilot protein PulS binds. Electron microscopy showed that the stable fragment produced by proteolysis is composed of two stacked rings that encircle a central channel and that it lacks the peripheral radial spokes that are seen in the native complex. Moreover, the electron microscopic images suggest that the N-terminal domain folds back into the large cavity of the channel that is formed by the C-terminal domain of the native complex, thereby occluding the channel, consistent with previous electrophysiological studies showing that the channel is normally closed.  相似文献   

2.
The PulC component of the Klebsiella oxytoca pullulanase secretion machinery (the secreton) was found by subcellular fractionation to be associated with both the cytoplasmic (inner) and outer membranes. Association with the outer membrane was independent of other secreton components, including the outer membrane protein PulD (secretin). The association of PulC with the inner membrane is mediated by the signal anchor sequence located close to its N terminus. These results suggest that PulC forms a bridge between the two membranes that is disrupted when bacteria are broken open for fractionation. Neither the signal anchor sequence nor the cytoplasmic N-terminal region that precedes it was found to be required for PulC function, indicating that PulC does not undergo sequence-specific interactions with other cytoplasmic membrane proteins. Cross-linking of whole cells resulted in the formation of a ca. 110-kDa band that reacted with PulC-specific serum and whose detection depended on the presence of PulD. However, antibodies against PulD failed to react with this band, suggesting that it could be a homo-PulC trimer whose formation requires PulD. The data are discussed in terms of the possible role of PulC in energy transduction for exoprotein secretion.  相似文献   

3.
Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.  相似文献   

4.
The DNA-binding protein Sac7d was previously modified to bind with high affinity to the N domain of the outer membrane secretin PulD from the bacterium Klebsiella oxytoca. Here, we show that binding of the Sac7d derivatives (affitins) to PulD is sensitive to conformational changes caused by denaturant and by the zwitterionic detergent Zwittergent 3-14 routinely used to extract secretins from outer membranes. This sensitivity to the conformational state of PulD allowed us to use the affitins as probes for the native structure of PulD and to devise protocols for examining in vitro synthesized protein in nonionic detergent and for the affinity purification of native PulD using affitins as ligands. When fused to periplasmic PhoA, three affitins inhibited PulD multimerization in vivo and caused loss of function. In two cases, this was likely to be due to dimerization of the affitin by the bound PhoA, as the effect was absent when the affitins were fused to monomeric MalE. In the third case, the MalE and PhoA moieties probably interfered sterically with PulD protomer interactions and, thereby, inhibited multimerization. None of the affitins tested interacted with PulD at sites of protomer interaction or blocked the secretin channel through which exoproteins cross the outer membrane in the Type II secretion pathway of which PulD is a key component.  相似文献   

5.
Dodecamerization and insertion of the outer membrane secretin PulD is entirely determined by the C-terminal half of the polypeptide (PulD-CS). In the absence of its cognate chaperone PulS, PulD-CS and PulD mislocalize to the inner membrane, from which they are extractable with detergents but not urea. Electron microscopy of PulD-CS purified from the inner membrane revealed apparently normal dodecameric complexes. Electron microscopy of PulD-CS and PulD in inner membrane vesicles revealed inserted secretin complexes. Mislocalization of PulD or PulD-CS to this membrane induces the phage shock response, probably as a result of a decreased membrane electrochemical potential. Production of PulD in the absence of the phage shock response protein PspA and PulS caused a substantial drop in membrane potential and was lethal. Thus, PulD-CS and PulD assemble in the inner membrane if they do not associate with PulS. We propose that PulS prevents premature multimerization of PulD and accompanies it through the periplasm to the outer membrane. PulD is the first bacterial outer membrane protein with demonstrated ability to insert efficiently into the inner membrane.  相似文献   

6.
Related outer membrane proteins, termed secretins, participate in the secretion of macromolecules across the outer membrane of many Gram-negative bacteria. In the pullulanase-secretion system, PulS, an outer membrane-associated lipoprotein, is required both for the integrity and the proper outer membrane localization of the PulD secretin. Here we show that the PulS-binding site is located within the C-terminal 65 residues of PulD. Addition of this domain to the filamentous phage secretin, pIV, or to the unrelated maltose-binding protein rendered both proteins dependent on PulS for stability. A chimeric protein composed of bacteriophage f1 pIV and the C-terminal domain of PulD required properly localized PulS to support phage assembly. An in vivo complex formed between the pIV-PulD65 chimera and PulS was detected by co-immunoprecipitation and by affinity chromatography.  相似文献   

7.
The cellular localization of a chimera formed by fusing a monomeric red fluorescent protein to the C terminus of the Klebsiella oxytoca type II secretion system outer membrane secretin PulD (PulD-mCherry) in Escherichia coli was determined in vivo by fluorescence microscopy. Like PulD, PulD-mCherry formed sodium dodecyl sulfate- and heat-resistant multimers and was functional in pullulanase secretion. Chromosome-encoded PulD-mCherry formed fluorescent foci on the periphery of the cell in the presence of high (plasmid-encoded) levels of its cognate chaperone, the pilotin PulS. Subcellular fractionation demonstrated that the chimera was located exclusively in the outer membrane under these circumstances. A similar localization pattern was observed by fluorescence microscopy of fixed cells treated with green fluorescent protein-tagged affitin, which binds with high affinity to an epitope in the N-terminal region of PulD. At lower levels of (chromosome-encoded) PulS, PulD-mCherry was less stable, was located mainly in the inner membrane, from which it could not be solubilized with urea, and did not induce the phage shock response, unlike PulD in the absence of PulS. The fluorescence pattern of PulD-mCherry under these conditions was similar to that observed when PulS levels were high. The complete absence of PulS caused the appearance of bright and almost exclusively polar fluorescent foci.  相似文献   

8.
Nader M  Journet L  Meksem A  Guillon L  Schalk IJ 《Biochemistry》2011,50(13):2530-2540
To get access to iron, Pseudomonas aeruginosa produces the siderophore pyoverdine (PVD), composed of a fluorescent chromophore linked to an octapeptide, and its corresponding outer membrane transporter FpvA. This transporter is composed of three domains: a β-barrel inserted into the membrane, a plug that closes the channel formed by the barrel, and a signaling domain in the periplasm. The plug and the signaling domain are separated by a sequence of five residues called the TonB box, which is necessary for the interaction of FpvA with the inner membrane TonB protein. Genetic deletion of the plug domain resulted in the presence of a β-barrel in the outer membrane unable to bind and transport PVD-Fe. Expression of the soluble plug domain with the TonB box inhibited PVD-(55)Fe uptake most likely through interaction with TonB in the periplasm. A reconstituted FpvA in the bacterial outer membrane was obtained by the coexpression of separately encoded plug and β-barrel domains, each endowed with a signal sequence and a signaling domain. This resulted in polypeptide complementation after secretion across the cytoplasmic membrane. The reconstituted FpvA bound PVD-Fe with the same affinity as wild-type FpvA, indicating that the resulting transporter is correctly folded and reconstituted in the outer membrane. PVD-Fe uptake was TonB-dependent but 75% less efficient compared to wild-type FpvA. These data are consistent with a gated mechanism in which no open channel with a complete removal of the plug domain for PVD-Fe diffusion is formed in FpvA at any point during the uptake cycle.  相似文献   

9.
Cell envelope associations of Aquaspirillum serpens flagella.   总被引:12,自引:9,他引:3       下载免费PDF全文
Specific regions of the cell envelope associated with the flagellar basal complex of the gram-negative bacterium Aquaspirillum (Spirillum) serpens were identified by studying each of the envelope layers: outer membrane, mucopeptide, and plasma membrane. The outer membrane around the flagella insertion site was differentiated by concentric membrane rings and central perforations surrounded by a closely set collar. The perforations in both the outer membrane and the isolated mucopeptide layer were of a size accomodating the central rod of the basal complex but smaller than either the L or the P disks. The P disk of the complex may lie between the mucopeptide and the outer membrane. Electron microscopy of intact, spheroplasted, or autolyzed preparations did not adequately resolve the location of the inner pair of disks of the basal complex. Freeze-etching, however, revealed differentiation within the plasma membrane that appeared to be related to the basal complex. The convex fracture face showed depressions which are interpreted as impressions of a disk surrounded by a set of evenly spaced macromolecular studs and containing a central "plug" interpreted as the central rod. In thin sections, blebs, which appear to be associated with the flagellar apparatus, were seen on the cytoplasmic side of the plasma membrane. Superimposing the dimensions of the flagellar basal complex and the spacings of the cell envelope layers and using the position of the L disk within the outer membrane for reference, showed that the S disk might be within and the M disk beneath the plasma membrane. A tentative model was developed for comparison with that based on the structure of the Escherichia coli basal complex.  相似文献   

10.
11.
The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane.  相似文献   

12.
The chaperone-like protein of the main terminal branch of the general secretory pathway from Klebsiella oxytoca , the outer membrane lipoprotein PulS, protects the multimeric secretin PulD from degradation and promotes its correct localization to the outer membrane. To determine whether these are separable functions, or whether resistance to proteolysis results simply from correct localization of PulD, we replaced the lipoprotein-type signal peptide of PulS by the signal peptide of periplasmic maltose-binding protein. The resulting periplasmic PulS retained its ability to protect PulD, but not its ability to localize PulD to the outer membrane and to function in pullulanase secretion. Periplasmic PulS competed with wild-type PulS to prevent pullulanase secretion, presumably again by causing mislocalization of PulD. A hybrid protein comprising the mature part of PulS fused to the C-terminus of full-length maltose-binding protein (MalE–PulS) had similar properties to the periplasmic PulS protein. Moreover, MalE–PulS was shown to associate with PulD by amylose-affinity chromatography. The MalE–PulS hybrid was rendered completely functional (i.e. it restored pullulanase secretion in a pulS mutant) by replacing its signal peptide with a lipoprotein-type signal peptide. However, this fatty-acylated hybrid protein was only functional if it also carried a lipoprotein sorting signal that targeted it to the outer membrane. Thus, the two functions of PulS are separate and fully dissociable. Incorrect localization, rather than proteolysis, of PulD in the absence of PulS was shown to be the factor that causes high-level induction of the phage shock response. The Erwinia chrysanthemi PulS homologue, OutS, can substitute for PulS, and PulS can protect the secretin OutD from proteolysis in Escherichia coli , indicating the possible existence of a family of PulS-like chaperone proteins.  相似文献   

13.
The rod cGMP-gated channel is localized in the plasma membrane of rod photoreceptor outer segments, where it plays a central role in phototransduction. It consists of alpha- and beta-subunits that assemble into a heterotetrameric protein. Each subunit contains structural features characteristic of nucleotide-gated channels, including a cGMP-binding domain, multiple membrane-spanning segments, and a pore region. In addition, the beta-subunit has a large glutamic acid- and proline-rich region called GARP that is also expressed as two soluble protein variants. Using monoclonal antibodies in conjunction with immunoprecipitation, cross-linking, and electrophoretic techniques, we show that the cGMP-gated channel associates with the Na/Ca-K exchanger in the rod outer segment plasma membrane. This complex and soluble GARP proteins also interact with peripherin-2 oligomers in the rim region of outer segment disc membranes. These results suggest that channel/peripherin protein interactions mediated by the GARP part of the channel beta-subunit play a role in connecting the rim region of discs to the plasma membrane and in anchoring the channel.exchanger complex in the rod outer segment plasma membrane.  相似文献   

14.
15.
K R Hardie  S Lory    A P Pugsley 《The EMBO journal》1996,15(5):978-988
Only one of the characterized components of the main terminal branch of the general secretory pathway (GSP) in Gram-negative bacteria, GspD, is an integral outer membrane protein that could conceivably form a channel to permit protein transport across this membrane. PulD, a member of the GspD protein family required for pullulanase secretion by Klebsiella oxytoca, is shown here to form outer membrane-associated complexes which are not readily dissociated by SDS treatment. The outer membrane association of PulD is absolutely dependent on another component of the GSP, the outer membrane-anchored lipoprotein PulS. Furthermore, the absence of PulS resulted in limited proteolysis of PulD and caused induction of the so-called phage shock response, as measured by increased expression of the pspA gene. We propose that PulS may be the first member of a new family of periplasmic chaperones that are specifically required for the insertion of a group of outer membrane proteins into this membrane. PulS is only the second component of the main terminal branch of the GSP for which a precise function can be proposed.  相似文献   

16.
The central pore of the SecYEG preprotein-conducting channel is closed at the periplasmic face of the membrane by a plug domain. To study its conformational dynamics, the plug was labeled site-specifically with an environment-sensitive fluorophore. In the presence of a stable preprotein translocation inter-mediate, the SecY plug showed an enhanced solvent exposure consistent with a displacement from the hydrophobic central pore region. In contrast, binding and insertion of a ribosome-bound nascent membrane protein did not alter the plug conformation. These data indicate different plug dynamics depending on the ligand bound state of the SecYEG channel.  相似文献   

17.
Gram-negative bacteria possess outer membrane receptors that utilize energy provided by the TonB system to take up iron. Several of these receptors participate in extracytoplasmic factor (ECF) signalling through an N-terminal signalling domain that interacts with a periplasmic transmembrane anti-sigma factor protein and a cytoplasmic sigma factor protein. The structures of the intact TonB-dependent outer membrane receptor FecA from Escherichia coli and FpvA from Pseudomonas aeruginosa have recently been solved by protein crystallography; however, no electron density was detected for their periplasmic signalling domains, suggesting that it was either unfolded or flexible with respect to the remainder of the protein. Here we describe the well-defined solution structure of this domain solved by multidimensional nuclear magnetic resonance (NMR) spectroscopy. The monomeric protein construct contains the 79-residue N-terminal domain as well as the next 17 residues that are part of the receptor's plug domain. These form two clearly distinct regions: a highly structured domain at the N-terminal end followed by an extended flexible tail at the C-terminal end, which includes the 'TonB-box' region, and connects it to the plug domain of the receptor. The structured region consists of two alpha-helices that are positioned side by side and are sandwiched in between two small beta-sheets. This is a novel protein fold which appears to be preserved in all the periplasmic signalling domains of bacterial TonB-dependent outer membrane receptors that are involved in ECF signalling, because the hydrophobic residues that make up the core of the protein domain are highly conserved.  相似文献   

18.
The proteasome is a major cytosolic proteolytic complex, indispensable in eukaryotic cells. The barrel-shaped core of this enzyme, the 20 S proteasome, is built from 28 subunits forming four stacked rings. The two inner beta-rings harbor active centers, whereas the two outer alpha-rings play a structural role. Crystal structure of the yeast 20 S particle showed that the entrance to the central channel was sealed. Because of this result, the path of substrates into the catalytic chamber has remained enigmatic. We have used tapping mode atomic force microscopy (AFM) in liquid to address the dynamic aspects of the 20 S proteasomes from fission yeast. We present here evidence that, when observed with AFM, the proteasome particles in top view position have either open or closed entrance to the central channel. The preferred conformation depends on the ligands present. Apparently, the addition of a substrate to the uninhibited proteasome shifts the equilibrium toward the open conformation. These results shed new light on the possible path of the substrate into the proteolytic chamber.  相似文献   

19.
Linker and deletion mutagenesis and gene fusions were used to probe the possible domain structure of the dodecameric outer membrane secretin PulD from the pullulanase secretion pathway of Klebsiella oxytoca. Insertions of 24 amino acids close to or within strongly predicted and highly conserved amphipathic beta strands in the C-terminal half of the polypeptide (the beta domain) abolished sodium dodecyl sulfate (SDS)-resistant multimer formation that is characteristic of this protein, whereas insertions elsewhere generally had less dramatic effects on multimer formation. However, the beta domain alone did not form SDS-resistant multimers unless part of the N-terminal region of the protein (the N domain) was produced in trans. All of the insertions except one, close to the C terminus of the protein, abolished function. The N domain alone was highly unstable and did not form SDS-resistant multimers even when the beta domain was present in trans. We conclude that the beta domain is a major determinant of multimer stability and that the N domain contributes to multimer formation. The entire or part of the N domain of PulD could be replaced by the corresponding region of the OutD secretin from the pectate lyase secretion pathway of Erwinia chrysanthemi without abolishing pullulanase secretion. This suggests that the N domain of PulD is not involved in substrate recognition, contrary to the role proposed for the N domain of OutD, which binds specifically to pectate lyase secreted by E. chrysanthemi (V. E. Shevchik, J. Robert-Badouy, and G. Condemine, EMBO J. 16:3007-3016, 1997).  相似文献   

20.
Pullulanase secretion in Escherichia coli depends on the expression of a MalT-regulated operon called pulC. Characterization of the first two genes of this operon showed that they encode, respectively, a 31,000-Da protein (PulC) and a 70,600-Da protein (PulD) which has a putative signal peptide and that these two proteins are required for pullulanase secretion. The analysis of alkaline phosphatase hybrid proteins generated by TnphoA mutagenesis of pulC and pulD showed that both PulC and PulD contain export signals which can direct the alkaline phosphatase segment of the hybrids across the inner membrane. A representative PulC-PhoA hybrid protein fractionated mainly with the inner membrane upon isopycnic sucrose gradient centrifugation of membrane vesicles. This, together with sequencing data, suggests that PulC is an inner membrane protein. Antibodies raised against a purified PulD-PhoA hybrid protein were used to show that PulD was enriched in low density outer membrane vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号