首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific cDNA probes of Moloney and AKR murine leukemia viruses have been prepared to characterize the proviral integration sites of these viruses in the genomes of Balb/Mo and Balb/c mice. The genetically transmitted Moloney provirus of Balb/Mo mice was detected in a characteristic Eco RI DNA fragment of 16 x 10(6) daltons. No fragment of this size was detected in tissue DNAs from Balb/c mice infected as newborns with Moloney virus. We conclude that a viral integration site, occupied in preimplantation mouse embryos, is not necessarily occupied when virus infects cells in post-natal animals. Balb/Mo and Balb/c mice do carry the AkR structural gene in an Eco RI DNA fragment of 12 x 10(6) daltons. Further restriction analysis of this fragment indicated that both mouse lines carry one AKR-type provirus. Leukemogenesis in Balb/Mo and newborn infected Balb/c mice is accompanied by reintegration of Moloney viral sequences in new chromosomal sites of tumor tissues. Part of the reintegrated Moloney viral sequences are of subgenomic size. The AKR viral sequences, however, are not found in new sites. Further restriction analysis revealed that the development of Moloney virus-induced leukemia in Balb/Mo mice does not lead to detectable structural alteration of the genetically transmitted Moloney and AKR structural genes. Possible mechanisms of the reintegration process are also discussed.  相似文献   

2.
Two lambda proviral DNA recombinants were characterized with a number of restriction endonucleases. One recombinant contained a complete presumptive avian myeloblastosis virus (AMV) provirus flanked by cellular sequences on either side, and the second recombinant contained 85% of a myeloblastosis-associated virus type 1 (MAV-1)-like provirus with cellular sequences adjacent to the 5' end of the provirus. Comparing the restriction maps for the proviral DNAs contained in each lambda hybrid showed that the putative AMV and MAV-1-like genomes shared identical enzyme sites for 3.6 megadaltons beginning at the 5' termini of the proviruses with respect to viral RNA. Two enzyme sites near the 3'-end of the MAV-1-like provirus were not present in the putative AMV genome. We also examined a number of leukemic myeloblast clones for proviral content and cell-provirus integration sites. The presumptive AMV provirus was present in all the leukemic myeloblast clones regardless of the endogenous proviral content of the target cells or the AMV pseudotype used for conversion. Multiple cellular sites were suitable for integration of the putative AMV genome and the helper genomes. The proviral genomes were all integrated colinearly with respect to linear viral DNA.  相似文献   

3.
The DNase I sensitivity of chromosomal DNA regions carrying integrated proviral genomes of Moloney (M-MuLV) and AKR Murine Leukemia Virus (AKR-MuLV), and the cellular homologue of the mos-gene (c-mos) of Moloney Sarcoma Virus (MSV) were studied in tumor tissues of leukemic mice. The genetically transmitted sequences of M-MuLV, AKR-MuLV, and the c-mos gene are all in DNase I resistant chromatin conformations in M-MuLV-induced tumors. Each M-MuLV-induced tumor contained at least one somatically acquired integrated recombinant MuLV genome that displayed two main characteristic features of active chromatin: a) a configuration hypersensitive to DNase I, and b) extensive hypomethylation. DNase I hypersensitive sites were mapped at the junction of cellular sequences and the 5'-viral large terminal repeat (LTR). Expression of a recombinant MuLV seems therefore to be a necessary feature to maintain the transformed state.  相似文献   

4.
The nature of Moloney murine leukemia virus (M-MuLV)-specific proviral DNA in exogenously infected mouse cells was studied. M-MuLV clone A9 cells, NIH-3T3 fibroblasts productively infected with M-MuLV, were used. These cells contain 10 to 15 copies of M-MuLV proviral DNA. The state of methylation of M-MuLV proviral DNA was examined by cleaving A9 cell DNA with restriction endonucleases which have the dinucleotide CpG in their cleavage sequences. Analysis with such enzymes, which recognized nine different sites in M-MuLV DNA, indicated that most if not all of the M-MuLV proviruses in A9 cells were completely unmethylated. An individual proviral integration was examined, using as probe adjacent single-copy cellular sequences. These sequences were obtained from a lambda phage recombinant clone containing an M-MuLV provirus from the A9 cells. This individual integration also showed no detectable methylation. In contrast, endogenous MuLV-related sequences present in NIH-3T3 cells before infection were largely methylated. The configuration chromatin containing M-MuLV proviruses was also investigated by digesting A9 nuclei with DNase I, followed by restriction analysis of the remaining DNA. Endogenous MuLV-related DNA was in chromatin relatively resistant to DNase I digestion, whereas the majority of M-MuLV-specific proviruses were in domains of intermediate DNase I sensitivity. Two proviral copies hypersensitive to DNase I digestion were identified. Analogy to the DNase I sensitivity of expressed and nonexpressed globin genes suggested that the proviral copies containing DNase I-hypersensitive sites were transcribed.  相似文献   

5.
EcoRI DNA fragments from a Moloney murine leukemia virus (M-MuLV)-infected mouse fibroblast line (M-MuLV clone A9) were cloned in lambda phage Charon 4A cloning vector to derive clones containing integrated M-MuLV proviral DNA. A 10- to 16-megadalton class of EcoRI fragments was chosen for cloning, based on (i) its ability to induce XC-positive virus upon transfection of NIH/3T3 cells, and (ii) its content of a 0.8-megadalton viral KpnI fragment diagnostic for M-MuLV. Six recombinant DNA clones were isolated which contain a complete M-MuLV provirus, as judged by (i) restriction endonuclease mapping and (ii) the fact that all of the clones gave rise to XC-positive, NB-tropic virus upon DNA infection in NIH/3T3 cells. The sizes of the inserts were 12.0 (for three clones) or 12.5 megadaltons (for three clones). Restriction mapping indicated that these six clones represent five different M-MuLV proviral integrations into different cellular DNA sites.  相似文献   

6.
7.
8.
9.
The glucocorticoid-regulatory sequences from the murine mammary tumor virus long terminal repeat (MMTV LTR) were introduced into the LTR of Moloney murine leukemia virus (M-MuLV) by recombinant DNA techniques. The site of insertion was in the M-MuLV LTR U3 region at -150 base pairs with respect to the RNA cap site. Infectious M-MuLVs carrying the altered LTRs (Mo + MMTV M-MuLVs) were recovered by transfection of proviral clones into NIH-3T3 cells. The Mo + MMTV M-MuLVs were hormonally responsive in that infection was 3 logs more efficient when performed in the presence of dexamethasone, irrespective of the orientation of the inserted MMTV sequences. However, even in the presence of hormone, the Mo + MMTV M-MuLVs were less infectious than wild-type M-MuLV. In contrast to the large effect on infectivity, dexamethasone induced virus-specific RNA levels in chronically Mo + MMTV M-MuLV-infected cells only two- to fourfold. Fusion plasmids between the altered LTRs and the bacterial chloramphenicol acetyltransferase gene allowed the investigation of LTR promoter strength by the transient chloramphenicol acetyltransferase expression assay. The chloramphenicol acetyltransferase assays indicated that the insertion of MMTV sequences into the M-MuLV LTR reduced promoter activity in the absence of glucocorticoids but that promoter activity could be induced two- to fivefold by dexamethasone. The Mo + MMTV M-MuLVs were also tested for the possibility that viral DNA synthesis or integration during initial infection was enhanced by dexamethasone. However, no significant difference was detected between cultures infected in the presence or absence of hormone. The insertion of MMTV sequences into an M-MuLV LTR deleted of its enhancer sequences did not yield infectious virus or active promoters, even in the presence of dexamethasone.  相似文献   

10.
11.
12.
13.
The effects of rearrangement and insertion of sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) were investigated. The alterations were made by recombinant DNA manipulations on a plasmid subclone containing an M-MuLV LTR. Promoter activity of altered LTRs was measured by fusion to the bacterial chloramphenicol acetyltransferase gene, followed by transient expression assay in NIH 3T3 cells. M-MuLV proviral organizations containing the altered LTRs were also generated, and infectious virus was recovered by transfection. Infectivity of the resulting virus was quantified by XC plaque assay, and pathogenicity was determined by inoculating neonatal NIH Swiss mice. Inversion of sequences in the U3 region containing the tandemly repeated enhancer sequences (-150 to -353 base pairs [bp]) reduced promoter activity approximately fivefold in the transient-expression assays. Infectious virus containing the inverted sequences (Mo- M-MuLV) showed a 20-fold reduction in relative infectivity compared with wild-type M-MuLV, but the virus still induced thymus-derived lymphoblastic lymphoma or leukemia in mice, with essentially the same kinetics as for wild-type M-MuLV. We previously derived an M-MuLV which carried inserted enhancer sequences from the F101 strain of polyomavirus (Mo + PyF101 M-MuLV) and showed that this virus is nonleukemogenic. In Mo + PyF101 M-MuLV, the PyF101 sequences were inserted between the M-MuLV promoter and the M-MuLV enhancers (at -150 bp). A new LTR was generated in which the PyF101 sequences were inserted to the 5' side of the M-MuLV enhancers (at -353 bp, PyF101 + Mo M-MuLV). The PyF101 + Mo LTR exhibited promoter activity similar (40 to 50%) to that of wild-type M-MuLV, and infectious PyF101 + Mo M-MuLV had high infectivity on NIH 3T3 cells (50% of wild type). In contrast to the nonleukemogenic Mo + PyF101 M-MuLV, PyF101 + Mo M-MuLV induced leukemia with kinetics similar to that of wild-type M-MuLV. Thus, the position of the PyF101 sequences relative to the M-MuLV LTR affected the biological behavior of the molecular construct. Furthermore, PyF101 + Mo M-MuLV induced a different spectrum of neoplastic disease. In comparison with wild-type M-MuLV, which induces a characteristic thymus-derived lymphoblastic lymphoma with extremely high frequency, PyF101 + Mo M-MuLV was capable of inducing both acute myeloid leukemia or thymus-derived lymphoblastic lymphoma, or both. Tumor DNA from both the PyF101 + Mo- and Mo- M-MuLV-inoculated animals contained recombinant proviruses with LTRs that differed from the initially inoculated virus.  相似文献   

14.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

15.
P Hevezi  S P Goff 《Journal of virology》1991,65(10):5333-5341
A series of recombinant retroviral genomes was generated by cotransformation of NIH 3T3 cells with a mixture of cloned DNAs: a proviral copy of the wild-type Moloney murine leukemia virus, and Moloney-based vectors containing defective copies of the chicken v-src and the murine v-abl oncogenes. Morphologically transformed foci, appearing at low frequencies in these cultures, released high titers of transforming viruses. Analysis of one group of these viruses showed that the genomes were recombinants containing portions of the viral gag gene juxtaposed to the v-src oncogene. Biologically active cloned DNAs of two of these viruses were obtained and mapped in detail. One of these viruses did not cause disease after inoculation into newborn mice, but the other induced rapidly fatal hemangiosarcomas located exclusively in the brain.  相似文献   

16.
M Groudine  S Das  P Neiman  H Weintraub 《Cell》1978,14(4):865-878
We have investigated the copy number, chromosomal subunit conformation and regulation of expression of integrated avian retrovirus genomes. Our results indicate that there are approximately two copies of the endogenous viral genomes (RAV-O) per haploid cell genome in uninfected chick embryo fibroblasts (CEF) and red blood cells (RBC). The copy number and subunit conformation (as measured by DNAasel sensitivity) of the RAV-O genomes are independent of the level of expression of these viral DNA sequences. In cells isolated from embryos of the V+, gs-chf- and gs+chf+ phenotypes, approximately one of the two viral genomes is in a DNAase l-sensitive conformation. Upon infection with an exogenous Rous sarcoma virus (PR-RSV-C), one new viral genome is integrated per haploid CEF genome. The newly integrated RSV genome is completely sensitive to DNAase l, and the subunit conformation of the endogenous viral genomes is not altered by the integration of additional exogenous proviruses. Both the endogenous and newly integrated exogenous viral genomes are present in "nu-body" structures, and the selective sensitivity of these proviral DNA sequences to DNAase l is maintained in isolated nucleosomes. Our experiments revealing the DNAase l sensitivity of one of the two RAV-O genomes in gs-chf-CEF led us to reexamine the level of viral specific RNA in CEF of various GS genotypes. We find that GS/GS CEF contain approximately 100 copies of viral RNA per cell, gs/gs CEF contain no detectable viral RNA, and the heterozygote GS/gs CEF contain approximately 50 copies of viral specific RNA per cell. These results suggest that the GS gene controls production of RAV-O RNA sequences in CEF in a "cis" fashion. In RBCs, however, the expression of the RAV-O genome is independent of the GS gene, with both GS/GS and gs/gs RBCs containing roughly equivalent amounts of viral specific RNA. Our results suggest that the chromosomal structure of the endogenous viral genes is independent of the GS gene, and that the GS gene is cis-acting and tissue-specific.  相似文献   

17.
We have probed the structure and arrangement of murine leukemia virus genomes in eight spontaneous AKR thymic leukemias by Southern hybridization with one ecotropic pol and four ecotropic env probes. These probes revealed many (in 2 cases over 15) somatically acquired proviruses that had undergone complex patterns of recombination. The large majority were not deleted and were structurally analogous to the oncogenic mink cell focus-inducing murine leukemia viruses isolated from AKR tumors in that the amino-terminal p15E-coding region derived from ecotropic AKR murine leukemia virus sequences, whereas certain gp70-coding sequences were nonecotropic. Nevertheless, we observed a few proviruses which did not appear to be gp70 recombinants; however, these proviruses were in general clearly recombinant within the p15E-coding sequences. Although the proviral recombination patterns were quite variable, in general the large majority of recombinant proviruses within each tumor appeared structurally identical, indicating that they originate from a common parent. Each tumor contained a unique pattern of provirus integrations; densitometer tracings of the Southern hybridizations indicated that many of the integrated proviruses were present at one copy per cell, suggesting that the tumors derive from a single cell which contained multiple integrated copies of a unique recombinant virus structurally similar to the mink cell focus-inducing viruses.  相似文献   

18.
The genomes of recombinant murine leukemia viruses recovered from HRS/J (type I env recombinants) and CWD (type II env recombinants) mice have distinct envelope gene structures. To better understand the biologic significance of these differences, we examined the differences in the responses of HRS/J and CWD mice to inoculation with an oncogenic type II env recombinant. The CWD recombinant accelerated the onset of lymphoma in both strains, but the disease latency in the HRS/J mice was about 2 months longer. Analysis of the recombinant viruses in the HRS/J tumors revealed that the injected type II env recombinant had recombined in vivo with the endogenous ecotropic viruses to generate secondary recombinants with type I envelope genes. In another set of experiments, comparison of complete or partial DNA sequences of the envelope genes from six recombinant proviruses confirmed that the origins of the sequences that encode an amino-terminal region of the TM envelope protein, p15E, distinguish type I envelope genes from type II. Taken together with the results of previous studies, these observations suggest that the differences in the responses of HRS/J and CWD mice to the oncogenic type II env recombinant resulted from an interaction between the viral TM protein and a host factor expressed in HRS/J mice.  相似文献   

19.
Ten recombinants between the viruses of vaccinia and ectromelia were isolated that cause the ectromelia virus specific lesions in mice. The structure of recombinant viral genomes, the efficiency of viral propagation in mice, the nature of lesions induced by viruses have been studied. Eight of obtained recombinants have a DNA insertion originating from the right end of ectromelia viral genome, nine recombinants have an insertion originating from the left end, seven recombinants possess both insertions. The latter recombinants have more pronounced pathogenicity for mice. Both revealed regions are supposed to define the specific pathogenicity of ectromelia virus for mice.  相似文献   

20.
One hallmark of murine leukemia virus (MuLV) leukemogenesis in mice is the appearance of env gene recombinants known as mink cell focus-inducing (MCF) viruses. The site(s) of MCF recombinant generation in the animal during Moloney MuLV (M-MuLV) infection is unknown, and the exact roles of MCF viruses in disease induction remain unclear. Previous comparative studies between M-MuLV and an enhancer variant, Mo+PyF101 MuLV, suggested that MCF generation or early propagation might take place in the bone marrow under conditions of efficient leukemogenesis. Moreover, M-MuLV induces disease efficiently following both intraperitoneal (i.p.) and subcutaneous (s.c.) inoculation but leukemogenicity by Mo+PyF101 M-MuLV is efficient following i.p. inoculation but attenuated upon s. c. inoculation. Time course studies of MCF recombinant appearance in the bone marrow, spleen, and thymus of wild-type and Mo+PyF101 M-MuLV i.p.- and s.c.-inoculated mice were carried out by performing focal immunofluorescence assays. Both the route of inoculation and the presence of the PyF101 enhancer sequences affected the patterns of MCF generation or early propagation. The bone marrow was a likely site of MCF recombinant generation and/or early propagation following i.p. inoculation of M-MuLV. On the other hand, when the same virus was inoculated s.c., the primary site of MCF generation appeared to be the thymus. Also, when Mo+PyF101 M-MuLV was inoculated i.p., MCF generation appeared to occur primarily in the thymus. The time course studies indicated that MCF recombinants are not involved in preleukemic changes such as splenic hyperplasia. On the other hand, MCFs were detected in tumors from Mo+PyF101 M-MuLV s. c.-inoculated mice even though they were largely undetectable at preleukemic times. These results support a role for MCF recombinants late in disease induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号