首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transforming growth factor beta (TGF beta) treatment of rat osteoblast-rich calvarial cells or of the clonal osteogenic sarcoma cells, UMR 106-01, resulted in dose-dependent inhibition of plasminogen activator (PA) activity, and increased production of 3.2 kb mRNA and protein for PA inhibitor -1 (PAI-1). Although tissue-type PA (tPA) protein was not measured, TGF beta did not influence production of mRNA for tPA. Production of 2.3 kb mRNA for urokinase-type PA (uPA) was also increased by TGF beta in a dose-dependent manner. The effects of TGF beta on synthesis of mRNA for PAI-1 and uPA were maintained when protein synthesis was inhibited, and were abolished by inhibition of RNA synthesis. Although uPA had not been detected previously as a product of rat osteoblasts, treatment of lysates of osteoblast-like cells with plasmin yielded a band of PA activity on reverse fibrin autography, corresponding to a low Mr form of uPA. Untreated conditioned media from normal osteoblasts or UMR 106-01 cells contained no significant TGF beta activity, but activity could be detected in acidified medium. Treatment of conditioned media with plasmin resulted in activation of approximately 50% of the TGF beta detectable in acidified media. The results identify several effects of TGF beta on the PA-PA inhibitor system in osteoblasts. Net regulation of tPA activity through the stimulatory actions of several calciotropic hormones and the promotion of PAI-1 formation by TGF beta could determine the amount of osteoblast-derived TGF beta activated locally in bone. Stimulation of osteoblast production of mRNA for uPA could reflect effects on the synthesis of sc-uPA, a precursor for the active form of the enzyme.  相似文献   

2.
The plasminogen activator (PA) in clonal osteogenic sarcoma cells of rat origin (UMR 106-01 and UMR 106-06) and in osteoblast-rich rat calvarial cells has been characterized using specific antibodies to be tissue-type PA (tPA). An Mr value of 75,000 by SDS-polyacrylamide gel electrophoresis and fibrin autoradiography supports this characterization. There was also evidence for an Mr 105,000 component, which could be due to a proteinase-inhibitor complex. The mechanism of regulation of this tPA activity has been studied in the clonal osteogenic sarcoma cells. Parathyroid hormone (PTH) and prostaglandin E2, which increase cyclic AMP production in the sarcoma cells, also increased tPA activity. The sensitivity and magnitude of the tPA response to PTH and prostaglandin E2 were increased by simultaneous treatment with isobutylmethylxanthine (IBMX) at drug concentrations which had little effect themselves on tPA activity. In UMR 106-06 cells, which unlike UMR 106-01 cells show a cyclic AMP response to calcitonin, tPA activity was also increased in response to calcitonin, and the effect was enhanced by IBMX. 1,25-Dihydroxyvitamin D-3 also increased tPA activity in the cells, but this response was not modified by IBMX. Synthetic peptide antagonists of PTH-responsive adenylate cyclase, [34Tyr]-hPTH (3-34) amide and [34Tyr]-hPTH (5-34) amide, inhibited the PTH-induced increase in tPA activity over the same concentration range at which they inhibited cyclic AMP production, but the antagonist peptides had no effect on the tPA responses to prostaglandin E2, calcitonin or 1,25-dihydroxyvitamin D-3. These data indicate that cyclic AMP mediates the actions of PTH, prostaglandin E2 and calcitonin in increasing tPA activity in the clonal osteogenic sarcoma cells. 1,25-Dihydroxyvitamin D-3, on the other hand, increases tPA activity through a mechanism independent of cyclic AMP.  相似文献   

3.
The bone resorbing agent, prostaglandin E2 (PGE2), was found to alter several components of the plasminogen activator (PA)/plasmin pathway in primary cultures of rat neonatal osteoblast-like cells. The mRNA and activities of both urokinase-type PA (uPA) and tissue-type PA (tPA) were enhanced by PGE2 treatment. The presence of mRNA for the uPA receptor (uPAR) has been demonstrated in these cells and steady-state levels shown to be greatly enhanced, the response being rapid and sustained for at least 24 hours. mRNA for plasminogen activator inhibitor 1 (PAI-1) was modulated in a biphasic manner, with inhibition of the constitutive level apparent at 4 hours of treatment and stimulation apparent at 12 hours and longer, while PAI-1 protein, measured by an ELISA assay for rat PAI-1, was diminished over this period. Neither PAI-2 mRNA nor mRNA for the broad spectrum protease inhibitor, protease nexin-1 (PN-1), was found to be modulated by PGE2. Therefore, PGE2 is likely to stimulate cell surface proteolytic activity, since uPA mRNA and cell-associated activity were elevated, as was mRNA for the cellular receptor for uPA. Although it was not possible to measure uPAR number and affinity it seems likely that elevated uPAR mRNA would translate into increased uPARs which would localize the increased uPA activity to the pericellular region. tPA mRNA and activity were also increased transiently with the activity inhibited with prolonged incubations, apparently by PAI-1. Elevation of tPA mRNA and activity may result in elevated activity within the extracellular matrix as tPA has been reported to associate with several matrix proteins. Thus the early effect of PGE2 would be to promote proteolysis, both pericellularly and in the extracellular matrix. The inhibition of PAI-1 mRNA and protein, which would contribute to the elevation of activity, is due to PGE2, but the later stimulatory effect on PAI-1 mRNA may be due to feedback regulation by transforming growth factor beta (TGFβ), secreted by osteoblasts and activated by elevated levels of PA. © 1995 Wiley-Liss Inc.  相似文献   

4.
Specific binding of leukemia-inhibitory factor (LIF) to osteoblasts, but not multinucleated osteoclasts, was demonstrated by receptor autoradiography by using cells isolated from newborn rat long bones. The clonal rat osteogenic sarcoma cells, UMR 106-06, which have several phenotypic properties of osteoblasts, expressed 300 LIF receptors per cell, with an apparent KD of 60 pM. Treatment of calvarial osteoblasts or UMR 106-01 cells with LIF resulted in a dose-dependent inhibition of plasminogen activator (PA) activity. Both calvarial osteoblasts and osteogenic sarcoma cells were shown by Western blotting and reverse fibrin autography to produce plasminogen activator inhibitor-1 (PAI-1), the production of which was increased by LIF treatment. Northern blot analysis revealed that LIF treatment resulted in a rapid (peak 1 hour), dose-dependent increase in mRNA for PAI-1. LIF treatment of the preosteoblast cell line, UMR 201, enhanced the alkaline phosphatase response of these cells to retinoic acid. Each of the osteoblast-like cell types (calvarial osteoblasts, UMR 106-06, and UMR 201) was shown to produce LIF by bioassay and, by using the polymerase chain reaction (PCR), was shown to express low levels of mRNA for LIF. These data establish that cells of the osteoblast lineage are targets for LIF action. The reported anabolic effects of this cytokine on bone formation in vivo could be related to inhibition of protease activity. LIF may be an important paracrine modulator in bone, or perhaps an autocrine one, based on the evidence for its production by osteoblasts and osteoblast-like cells.  相似文献   

5.
6.
HTC rat hepatoma cells synthesize and secrete both tissue-type plasminogen activator (tPA) and type 1 plasminogen activator-inhibitor (PAI-1). Incubation with the synthetic glucocorticoid dexamethasone causes a rapid decrease in tPA activity which is secondary to a 5-fold increase in PAI-1 antigen and activity. Paradoxically, dexamethasone increases tPA antigen by 50%. We have analyzed HTC cell RNA by Northern and slot blot analysis, using as probes radiolabeled human PAI-1 and rat tPA cDNAs. HTC cells have a single species of PAI-1 mRNA of approximately 3.2 kilobases, which is increased 4-fold upon incubation with dexamethasone. Maximal induction occurs after 8-10 h of incubation. Half-maximal induction occurs at 5 nM dexamethasone. Dexamethasone also transiently increases the 2.8 kilobase tPA mRNA. The protein synthesis inhibitor cycloheximide does not affect accumulation of PAI-1 mRNA and does not block its induction by dexamethasone. In contrast, cycloheximide alone causes an increase in tPA mRNA, and in combination with dexamethasone, no further increase is observed. Induction of both mRNAs is prevented by actinomycin D. We conclude that the dexamethasone-induced increase in HTC cell PAI-1 activity and antigen is the result of a direct effect on accumulation of PAI-1 mRNA.  相似文献   

7.
Parathyroid hormone (PTH) exerts potent and diverse effects in bone and cartilage through activation of type 1 PTH receptors (PTH1R) capable of coupling to protein kinase A (PKA) and PKC. We have used macroarrays to identify zinc finger protein butyrate response factor-1 (BRF1) as a novel PTH regulated gene in clonal and normal osteoblasts of human and rodent origin. We further demonstrate that in human osteoblast-like OHS cells, biologically active hPTH(1-84) and hPTH(1-34) stimulate BRF1 mRNA expression in a dose- and time-dependent manner, while the amino-terminally truncated hPTH(3-84) which does not activate PTH1R has no effect. Moreover, using specific stimulators or inhibitors of PKA and PKC activity, the PTH-elicited BRF1 mRNA expression is mediated through the PKA signaling pathway. In mouse calvarial osteoblasts, BRF1 mRNA levels are upregulated by PTH(1-84) and reduced in response to bone morphogenetic protein 2 (BMP-2). Hence, our data showing that BRF1 is expressed in osteoblastic cells and regulated by PTH and BMP-2, suggest an important role for BRF1 in osteoblasts within the molecular network of PTH-dependent bone remodeling.  相似文献   

8.
Parathyroid hormone (PTH) regulates bone remodeling and calcium homeostasis by acting on osteoblasts. Recently, the gene expression profile changes in the rat PTH (1-34, 10(-8)M)-treated rat osteoblastic osteosarcoma cell line, UMR 106-01, using DNA microarray analysis showed that mRNA for LTBP-1, a latent transforming growth factor (TGF-beta)-binding protein is stimulated by PTH. Latent TGF-beta binding proteins (LTBPs) are required for the proper folding and secretion of TGF-beta, thus modifying the activity of TGF-beta, which is a local factor necessary for bone remodeling. We show here by real time RT-PCR that PTH-stimulated LTBP-1 mRNA expression in rat and mouse preosteoblastic cells. PTH also stimulated LTBP-1 mRNA expression in all stages of rat primary osteoblastic cells but extended expression was found in differentiating osteoblasts. PTH also stimulated TGF-beta1 mRNA expression in rat primary osteoblastic cells, indicating a link between systemic and local factors for intracellular signaling in osteoblasts. An additive effect on LTBP-1 mRNA expression was found when UMR 106-01 cells were treated with PTH and TGF-beta1 together. We further examined the signaling pathways responsible for PTH-stimulated LTBP-1 and TGF-beta1 mRNA expression in UMR 106-01 cells. The PTH stimulation of LTBP-1 and TGF-beta1 mRNA expression was dependent on the PKA and the MAPK (MEK and p38 MAPK) pathways, respectively in these cells, suggesting that PTH mediates its effects on osteoblasts by several intracellular signaling pathways. Overall, we demonstrate here that PTH stimulates LTBP-1 mRNA expression in osteoblastic cells and this is PKA-dependent. This event may be important for PTH action via TGF-beta in bone remodeling.  相似文献   

9.
10.
11.
Osteoblasts secrete transforming growth factor beta (TGFβ) as a biologically inert, latent complex that must be dissociated before the growth factor can exert its effects. We have examined the production and proteolytic activation of latent TGFβ (LTGFβ) by clonal UMR 106-01 rat osteosarcoma cells and neonatal mouse calvarial (MC) osteoblast-like cells in vitro. Synthetic bPTH-(1–34) increased the activity of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PA) in cell lysates (CL) of UMR 106-01 cells. The concentration of active TGFβ in serum-free CM from cultures treated with bPTH-(1–34) and plasminogen was significantly greater than in CM from untreated controls and cultures treated with either bPTH-(1–34) or plasminogen alone. This effect occurred at concentrations of PTH-(1–34) that increased PA activity and was prevented by aprotinin, an inhibitor of plasmin activity. Treatment with bPTH-(1–34) had no effect on the concentration of TGFβ in acid-activated samples of CM. Functional consequences of proteolytically activated TGFβ was examined in primary cultures of neonatal MC osteoblast-like cells. Human platelet TGFβ1 caused a dose-dependent increase in the migration of these cells in an in vitro wound healing assay. Cell migration was also stimulated in cultures treated with bPTH-(1–34) and plasminogen together. This effect was blocked by an anti-TGFβ1 antibody. The results of these studies demonstrate that (1) LTGFβ secreted by osteoblasts in vitro is activated under conditions where the plasmin activity in the cultures is increased, and (2) the TGFβ generated by plasmin-mediated proteolysis is biologically active. We suggest that the local concentration of TGFβ in bone may be controlled by the osteoblast-associated plasminogen activator/plasmin system. Furthermore, since several calciotropic factors influence osteoblast PA activity, this system may have an important role in mediating their anabolic and/or catabolic effects. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Parathyroid hormone (PTH) is known to have both catabolic and anabolic effects on bone. The dual functionality of PTH may stem from its ability to activate two signal transduction mechanisms: adenylate cyclase and phospholipase C. Here, we demonstrate that continuous treatment of UMR 106-01 and primary osteoblasts with PTH peptides, which selectively activate protein kinase C, results in significant increases in DNA synthesis. Given that ERKs are involved in cellular proliferation, we examined the regulation of ERKs in UMR 106-01 and primary rat osteoblasts following PTH treatment. We demonstrate that treatment of osteoblastic cells with very low concentrations of PTH (10(-12) to 10(-11) m) is sufficient for substantial increases in ERK activity. Treatment with PTH-(1-34) (10(-8) m), PTH-(1-31), or 8-bromo-cAMP failed to stimulate ERKs, whereas treatment with phorbol 12-myristate 13-acetate, serum, or PTH peptides lacking the N-terminal amino acids stimulated activity. Furthermore, the activation of ERKs was prevented by pretreatment of osteoblastic cells with inhibitors of protein kinase C (GF 109203X) and MEK (PD 98059). Treatment of UMR cells with epidermal growth factor (EGF), but not PTH, promoted tyrosine phosphorylation of the EGF receptor. Transient transfection of UMR cells with p21(N17Ras) did not block activation of ERKs following treatment with low concentrations of PTH. Thus, activation of ERKs and proliferation by PTH is protein kinase C-dependent, but stimulation occurs independently of the EGF receptor and Ras activation.  相似文献   

13.
14.
促性腺激素诱导猕猴排卵周期中卵巢纤溶酶...   总被引:3,自引:1,他引:2  
刘以训  邹如金 《生理学报》1991,43(5):472-479
Changes of plasminogen activator (PA) and its inhibitor (PAI-1) activity and antigen have been investigated during PMSG/hCG induced ovulation in rhesus monkeys. It has been demonstrated that the ovarian tissue type PA (tPA) activity, which reaches maximum prior to ovulation and declines thereafter, is closely related to follicular rupture; significant increases in urokinase type PA (uPA) only occurs in granulosa cells after ovulation. Since the secretory activity of ovarian PAI-1 reaches its peak level 12-24 h earlier than tPA the rapid decrease in PAI-1 activity in the approach of ovulation is correlated with the elevation of tPA activity. It is, therefore, suggested that a counterbalance of tPA and PAI-1 activity within the ovary may play an important role in the ovulation mechanism, whereas uPA may be involved in the regulation of corpus luteum formation.  相似文献   

15.
In UMR 106 rat osteosarcoma cells, parathormone (1-34hPTH) and calcitonin (sCT) stimulated adenylate cyclase (AC) activity 5.5-and 2.8-fold, respectively. AC in osteoblasts (OB) from collagenase-treated calvaria of 3-day-old rats responded similarly to 1-34hPTH. In contrast, fibroblasts (mouse fibroblastomas) displayed a marginal 1-34hPTH sensitive AC. Osteoclasts (OC) of collagenase-treated rat calvariae, rat monocytes and mouse macrophages did not demonstrate 1-34hPTH inducable AC activity. Physiological concentrations of 24,25-dihydroxyvitamin D-3 attenuated PTH-sensitive AC in OB and UMR 106 cells within 20 min, while 1,25-dihydroxyvitamin D-3 showed no such immediate effect. In contrast, the AC response to Gpp(NH)p was unaffected by 24,25-(OH)2D3, indicating that 24,25-(OH)2D3 interrupts the coupling of the PTH receptor to the GTP binding protein Gs. OB and UMR 106 cells were also subjected to long-term (48 h) incubation with vitamin D-3 metabolites, 1-34hPTH or 20% serum from patients with secondary hyperparathyroidism (sHBT-serum), respectively. PTH-sensitive AC was markedly attenuated by pre-exposure to both 1-34hPTH and 1,25-(OH)2D3, while minimally affected by corresponding 24,25-(OH)2D3 and 20% sHPT-serum treatment. The secretion of alkaline phosphatase (Alphos) from the two cell types was strongly increased by 1-34hPTH, the effect being abolished by the presence of 24,25-(OH)2D3. Iliac crest biopsies of normal individuals exhibited a clear negative correlation between PTH-sensitive AC and corresponding serum 24,25-(OH)2D3 levels. Basal AC activity was, however, negatively correlated to serum 1,25-(OH)2D3 concentrations. In summary, the results show that 24,25-(OH)2D3 reduces PTH-stimulated AC activity in and Alphos secretion from osteoblastic bone cells by rapidly and directly interfering with the plasma membrane. These data reinforce the probable in vivo significance of 24,25-(OH)2D3. Moreover, the negative correlation between basal AC activity and serum 1,25-(OH)2D3 levels indicates a possible role for 1,25-(OH)2D3 in regulating bone cell synthesis of AC components in vivo.  相似文献   

16.
Previous studies from our laboratory have demonstrated that OVCA 433 human ovarian carcinoma cells are glucocorticoid responsive by several criteria and contain high affinity, saturable, steroid-specific glucocorticoid receptors. These cells secrete both mammalian plasminogen activators (PAs), urokinase (uPA) and tissue-type PA (tPA). Treatment of OVCA 433 cells with 1 x 10(-7) M dexamethasone (Dex) for 4 days led to 77% and 83% reductions in the extracellular activities of uPA and tPA, respectively, released into serum-free conditioned medium during a 1-h period. Dex treatment led to a 71% decrease in the rate of extracellular uPA antigen accumulation, as determined by enzyme-linked immunosorbent assay, as well as a 73% reduction in steady state uPA mRNA levels. In contrast, Dex treatment led to only a 42% decrease in the rate of extracellular tPA antigen accumulation and a 48% decrease in tPA mRNA levels; such decreases were insufficient to account for the 83% reduction in tPA activity. Thus, while Dex-induced decreases in uPA antigen and mRNA levels accounted for all but 6% of the decrease in uPA activity, a large discrepancy existed between the magnitudes of decreased tPA activity and decreased tPA antigen and mRNA levels. OVCA 433 cells produce both PAI-1 and PAI-2, two specific PA inhibitors. Treatment of cells with 1 x 10(-7) M Dex for 4 days led to a 3.3-fold increase in the rate of extracellular PAI-1 accumulation, with little or no effect on PAI-2 accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The plasminogen-activator system provides proteolytic activity in many biological processes. The regulation of plasminogen activation may occur at many levels including the synthesis and secretion of plasminogen activators (PA) and the specific inhibition of PA activity by inhibitors. PA-inhibitor type-1 (PAI-1) is an efficient inhibitor of tissue-type PA (tPA) and urokinase-type PA (uPA) that may therefore be instrumental for the control of plasminogen activation. To investigate if coordinated regulation of PA and PA inhibitors take place in vivo in response to physiological signals, we have examined the regulation of PAI-1 and tPA in the ovary during gonadotropin-induced ovulation. We found that PAI-1, as well as tPA activity and mRNA levels, were coordinately regulated by gonadotropins in a time-dependent and cell-specific manner, such that a surge of PA-activity was obtained just prior to ovulation. Both theca-interstitial and granulosa cells synthesized PAI-1, but their maximal PAI-1 expression occurred at different times during the periovulatory period, ensuring inhibition of proteolytic activity in ovarian extra cellular compartments both before and after ovulation. The coordinated regulation of tPA and PAI-1 in the ovary may fine-tune the peak of PA activity which may be important for the regulation of the ovulatory process.  相似文献   

18.
Skin extracellular matrix (ECM) molecules regulate a variety of cellular activities, including cell movement, which are central to wound healing and metastasis. Regulated cell movement is modulated by proteases and their associated molecules, including the serine proteases urinary-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) and their inhibitors (PAIs). As a result of wounding and loss of basement membrane structure, epidermal keratinocytes can become exposed to collagen. To test the hypothesis that during wounding, exposed collagen, the most abundant ECM molecule in the skin, regulates keratinocyte PA and PAI gene expression, we utilized an in vitro model in which activated keratinocytes were cultured in dishes coated with collagen or other ECM substrates. tPA, uPA, and PAI-1 mRNA and enzymatic activity were detected when activated keratinocytes attached to fibronectin, vitronectin, collagen IV, and RGD peptide. In contrast, adhesion to collagen I and collagen III completely suppressed expression of PAI-1 mRNA and protein and further increased tPA expression and activity. Similarly, keratinocyte adhesion to laminin-1 suppressed PAI-1 mRNA and protein expression and increased tPA activity. The suppressive effect of collagen I on PAI-1 gene induction was dependent on the maintenance of its native fibrillar structure. Thus, it would appear that collagen- and laminin-regulated gene expression of molecules associated with plasminogen activation provides an additional dimension in the regulation of cell movement and matrix remodeling in skin wound healing.  相似文献   

19.
Human cervical epithelial cells transfected and immortalized with human papillomavirus type 16 DNA (HCE16/3) can be, like many other epithelial cells, normally grown in medium supplemented with epidermal growth factor, cholera toxin, hydrocortisone, insulin, transferrin, thyroid hormone and serum. We found that hydrocortisone diminished tissue plasminogen activator (tPA) production to an undetectable level. The removal of hydrocortisone increased urokinase plasminogen activator (uPA) activity within 24-48 h and tPA activity within 48-72 h, and converted the cells to a more elongated and fibroblastic phenotype. Upregulation of uPA mRNA was seen as early as at 3 h and of tPA mRNA within 48-72 h. Higher molecular weight forms (97-110 kDa) of plasminogen activators were seen in zymograms, apparently complexed with PAI-1, starting at 6 h both in the presence and absence of hydrocortisone. Immunoprecipitation with a PAI-1 monoclonal antibody confirmed that both uPA and tPA were complexed. We also studied normal diploid human bronchial epithelial cells (NHBE) and NHBE cells transformed with an adeno-12/SV40 hybrid virus (BEAS-2B). In both types of nonmalignant epithelial cells, the removal of hydrocortisone increased uPA activity. The omission of hydrocortisone increased tPA levels significantly in BEAS-2B cell cultures, and in NHBE cell cultures tPA became detectable at 72 h. No PA complexes were seen in these two cell types. We conclude that normal and immortalized nonmalignant epithelial cells produce tPA, but only if hydrocortisone is omitted in the growth medium.  相似文献   

20.
Focal radiotherapy for cancer patients has detrimental effects on bones within the radiation field and the primary clinical signs of bone damage include the loss of functional osteoblasts. We reported previously that daily injection of parathyroid hormone (PTH, 1–34) alleviates radiation-induced osteopenia in a preclinical radiotherapy model by improving osteoblast survival. To elucidate the molecular mechanisms, we irradiated osteoblastic UMR 106-01 cells and calvarial organ culture and demonstrated an anti-apoptosis effect of PTH1–34 on these cultures. Inhibitor assay indicated that PTH exerts its radioprotective action mainly through protein kinase A/β-catenin pathway. γ-H2AX foci staining and comet assay revealed that PTH efficiently promotes the repair of DNA double strand breaks (DSBs) in irradiated osteoblasts via activating the β-catenin pathway. Interestingly, Wnt3a alone also blocked cell death and accelerated DNA repair in primary osteoprogenitors, osteoblastic and osteocytic cells after radiation through the canonical signaling. Further investigations revealed that both Wnt3a and PTH increase the amount of Ku70, a core protein for initiating the assembly of DSB repair machinery, in osteoblasts after radiation. Moreover, down-regulation of Ku70 by siRNA abrogated the prosurvival effect of PTH and Wnt3a on irradiated osteoblasts. In summary, our results identify a novel role of PTH and canonical Wnt signaling in regulating DSB repair machinery and apoptosis in osteoblasts and shed light on using PTH1–34 or Wnt agonist as possible therapy for radiation-induced osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号