首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The feasibility of producing ethanol in a continuous system from cellulose using Clostridirrrn thermocellum was investigated. This anaerobic and therniophilic bacterium was able to degrade cellulose directly into ethanol with acetic acid, hydrogen. and carbon dioxide as by-products of this fermentation. The fermentation was first carried out in a batch mode to study the effects of buffers, temperature, and agitation on microbial growth and ethanol production. From the compounds used to control pH. sodium bicarbonate had the most preferred effects on generation time and ethanol production. As expected, there was a positive relationship between temperature and growth rate. On the other hand, agitation did not benefit from ethanol production or microbial growth. The possibility of noncompetitive inhibition within such a system was deduced from the calculation of the kinetic constants K(m) and V(max). Continuous fermentations were carried out at 60 degrees C and pH 7.0 using 1.5 and 3% pure cellulose as a limiting substrate. The maximum ethanol concentration reached during the 1.5% cellulose fermentation was 0.3%. and 0.9% during the 3% cellulose fermentation. The yield of ethanol was about 0.3 grams per gram of consumed cellulose. The overall yield in both schemes was around 0.45 and 0.75 grams per gram of cellulose degraded. It was concluded that cellulose could be degraded continuously in a system with C. thermocellum for production of ethanol. While the continuous system like the batch method is feasible, it may not be promising as yet because of the slow generation time of this microorganism.  相似文献   

3.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

4.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

5.
The potential for enhancing ethanol production from cellodextrins by employing mixed-culture (Candida wickerhamii-Saccharomyces cerevisiae) fermentations was investigated. Initially, ethanol production was monitored in fermentation medium containing 50 g/L glucose plus 45 g/L cellobiose. Inoculum levels and times of inoculum addition were varied. Of the conditions tested, the most rapid rates of ethanol formation occurred in fermentations in which either C. wickerhamii and S. cerevisiae were coinoculated at a ratio of 57 : 1 cell/mL or in fermentations in which a 10-fold-greater S. cerevisiae inoculum was added to a pure culture C. wickerhamii fermentation after 1 day incubation. These conditions were used to attempt to enhance fermentations in which cellodextrins produced by trifluoroacetic acid hydrolysis of cellulose served as the sole carbon source. Cellodextrins that were not further purified after cellulose hydrolysis contained compounds that were slightly inhibitory to C. wickerhamii. In this case the mixed-culture fermentations produced 12-45% more ethanol than a pure culture C. wickerhamii fermentation. However, if the substrate was treated with Darco G-60 charcoal, the toxic materials were apparently removed and the pure culture C. wickerhamii fermentations performed as well as the mixed-culture fermentations.  相似文献   

6.
A thermostable beta-glucosidase from Clostridium thermocellum which is expressed in Escherichia coli was used to determine the substrate specificity of the enzyme. A restriction map of the beta-glucosidase gene cloned in plasmid pALD7 was determined. Addition of the E. coli cell extract (containing the beta-glucosidase) to the cellulase complex from C. thermocellum increased the conversion of crystalline cellulose (Avicel) to glucose. The increase was specifically due to hydrolysis of the accumulated cellobiose. A cellulose degradation process using beta-glucosidase to assist the potent cellulase complex of C. thermocellum, as shown here can open the way for industrial saccharification of cellulose to glucose.  相似文献   

7.
Mesophilic cellulolytic clostridia from freshwater environments   总被引:1,自引:0,他引:1  
Eight strains of obligately anaerobic, mesophilic, cellulolytic bacteria were isolated from mud of freshwater environments. The isolates (C strains) were rod-shaped, gram negative, and formed terminal spherical to oval spores that swelled the sporangium. The guanine plus cytosine content of the DNA of the C strains ranged from 30.7 to 33.2 mol% (midpoint of thermal denaturation). The C strains fermented cellulose with formation primarily of acetate, ethanol, CO(2), and H(2). Reducing sugars accumulated in the supernatant fluid of cultures which initially contained >/=0.4% (wt/vol) cellulose. The C strains resembled Clostridium cellobioparum in some phenotypic characteristics and Clostridium papyrosolvens in others, but they were not identical to either of these species. The C strains differed from thermophilic cellulolytic clostridia (e.g., Clostridium thermocellum) not only in growth temperature range but also because they fermented xylan and five-carbon products of plant polysaccharide hydrolysis such as d-xylose and l-arabinose. At 40 degrees C, cellulose was degraded by cellulolytic mesophilic cells (strain C7) at a rate comparable to that at which C. thermocellum degrades cellulose at 60 degrees C. Substrate utilization and growth temperature data indicated that the C strains contribute to the anaerobic breakdown of plant polymers in the environments they inhabit.  相似文献   

8.
This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of both C. thermocellum and T. saccharolyticum. Fermentation of 92 g/liter Avicel by this coculture resulted in 38 g/liter ethanol, with acetic and lactic acids below detection limits, in 146 h. These results demonstrate that ethanol production by thermophilic, cellulolytic microbes is amenable to substantial improvement by metabolic engineering.  相似文献   

9.
Yu T  Xu X  Peng Y  Luo Y  Yang K 《Microbiological research》2012,167(6):364-371
Clostridium thermocellum, a thermophilic anaerobe, has the unusual capacity to convert cellulosic biomass into ethanol and hydrogen. In this work, the cell wall proteome of C. thermocellum was investigated. The proteins in the cell wall fraction of C. thermocellum prepared by the boiling SDS method were released by mutanolysin digestion and resolved on two-dimensional (2D) gel. One hundred and thirty-two proteins were identified by mass spectrometry, among which the extracellular solute-binding protein (CbpB/cthe_1020), enolase, glyceraldehyde-3-phosphate dehydrogenase and translation elongation factor EF-Tu were detected as highly abundant proteins. Besides the known surface localized proteins, including FtsZ, MinD, GroEL, DnaK, many enzymes involved in bioenergetics, such as alcohol dehydrogenases and hydrogenases were also detected. By glycan stain and MS analysis of glycopeptides, we identified CbpB as a glycoprotein, which is the second glycoprotein from C. thermocellum characterized. The fact that CbpB was highly abundant in the cell wall region and glycosylated, reflects its importance in substrate assimilation. Our results indicate cell wall proteins constitute a significant portion of cellular proteins and may play important physiological roles (i.e. bioenergetics) in this bacterium. The insights described are relevant for the development of C. thermocellum as a biofuel producer.  相似文献   

10.
Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.  相似文献   

11.
A growth medium was developed for cultivation of Clostridium thermocellum ATCC 27405 in which "background" carbon present in buffers, reducing agents, chelating agents, and growth factors was a small fraction of the carbon present in the primary growth substrate. Background carbon was 1.6% of primary substrate carbon in the low-carbon (LC) medium, whereas it accounts for at least 40% in previously reported media. Fermentation of cellulose in LC medium was quite similar to Medium for Thermophilic Clostridia (MTC), a commonly used growth medium that contains background carbon at 88% of primary substrate carbon. Of particular note, we found that the organism can readily be cultivated by eliminating some components, lowering the concentrations of others, and employing a tenfold lower concentration of reducing agent. As such, we were able to reduce the amount of background carbon 55-fold compared to MTC medium while reaching the same cell biomass concentration. The final mass ratios of the products acetate:ethanol:formate were 5:3.9:1 for MTC and 4.1:1.5:1 for LC medium. LC medium is expected to facilitate metabolic studies involving identification and quantification of extracellular metabolites. In addition, this medium is expected to be useful in studies of cellulose utilization by anaerobic enrichment cultures obtained from environmental inocula, and in particular to diminish complications arising from metabolism of carbon-containing compounds other than cellulose. Finally, LC medium provides a starting point for industrial growth media development.  相似文献   

12.
Avicel serves as a model microcrystalline cellulose substrate for investigations of cellulolytic microbial performance and cellulase enzyme systems in submerged liquid cultures. Clostridium thermocellum is a thermophilic, anaerobic bacterium capable of degrading lignocellulose and fermenting it to ethanol and other products, suggesting the native growth environment is similar to that supported by solid substrate cultivation. Few studies have examined the effects of process parameters on the metabolism of thermophilic anaerobes in solid substrate cultivation, however. The effects of solid substrate cultivation (SSC) substrate moisture content (30%, 50% and 70% wet-basis) and cultivation duration (2, 4 and 8 days) on the metabolic activity of C. thermocellum 27405 on Avicel was studied. The 70% substrate moisture content SSC culture yielded total end-product concentrations that were comparable to submerged liquid cultures. The SSC cultivation conditions with the highest end-product formation on Avicel were the combination of 70% substrate moisture content and cultivation duration period of 4 days, producing approximately 100mM of total end-products. The ethanol and lactate concentrations were fairly constant and did not change significantly over time in SSC. Acetate production was more dependent on the cultivation conditions in SSC and was significant for both the 70% substrate moisture content SSC and liquid cultivation experiments, making up on average 56% and 86% of total end-products, respectively. Performance of C. thermocellum 27405 in SSC was more dependent on the kinetic properties rather than the thermodynamic properties of substrate moisture content. High substrate loadings in C. thermocellum cultivation affected product ratios, resulting in the higher observed acetate production. In addition, cessation of metabolism was observed prior to complete Avicel conversion; the mechanisms involved need further investigation.  相似文献   

13.
Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon consumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellodextrin, and with pure cellulose, as a carbon source more closely related to lignocellulosic compounds, strengthen the idea of a bacterium particularly well adapted, and even restricted, to a cellulolytic lifestyle. The metabolic flux analysis from continuous cultures revealed that (i) in comparison to cellobiose, the cellulose hydrolysis by the cellulosome introduces an extra regulation of entering carbon flow resulting in globally lower metabolic fluxes on cellulose than on cellobiose, (ii) the glucose 1-phosphate/glucose 6-phosphate branch point controls the carbon flow directed towards glycolysis and dissipates carbon excess towards the formation of cellodextrins, glycogen and exopolysaccharides, (iii) the pyruvate/acetyl-CoA metabolic node is essential to the regulation of electronic and energetic fluxes. This in-depth analysis of C. cellulolyticum metabolism has permitted the first attempt to engineer metabolically a cellulolytic microorganism.  相似文献   

14.
Regulation of cell-specific cellulase synthesis (expressed in milligrams of cellulase per gram [dry weight] of cells) by Clostridium thermocellum was investigated using an enzyme-linked immunosorbent assay protocol based on antibody raised against a peptide sequence from the scaffoldin protein of the cellulosome (Zhang and Lynd, Anal. Chem. 75:219-227, 2003). The cellulase synthesis in Avicel-grown batch cultures was ninefold greater than that in cellobiose-grown batch cultures. In substrate-limited continuous cultures, however, the cellulase synthesis with Avicel-grown cultures was 1.3- to 2.4-fold greater than that in cellobiose-grown cultures, depending on the dilution rate. The differences between the cellulase yields observed during carbon-limited growth on cellulose and the cellulase yields observed during carbon-limited growth on cellobiose at the same dilution rate suggest that hydrolysis products other than cellobiose affect cellulase synthesis during growth on cellulose and/or that the presence of insoluble cellulose triggers an increase in cellulase synthesis. Continuous cellobiose-grown cultures maintained either at high dilution rates or with a high feed substrate concentration exhibited decreased cellulase synthesis; there was a large (sevenfold) decrease between 0 and 0.2 g of cellobiose per liter, and there was a much more gradual further decrease for cellobiose concentrations >0.2 g/liter. Several factors suggest that cellulase synthesis in C. thermocellum is regulated by catabolite repression. These factors include: (i) substantially higher cellulase yields observed during batch growth on Avicel than during batch growth on cellobiose, (ii) a strong negative correlation between the cellobiose concentration and the cellulase yield in continuous cultures with varied dilution rates at a constant feed substrate concentration and also with varied feed substrate concentrations at a constant dilution rate, and (iii) the presence of sequences corresponding to key elements of catabolite repression systems in the C. thermocellum genome.  相似文献   

15.
The fermentation of cellulose and cellobiose by Clostridium thermocellum monocultures and C. thermocellum/Methanobacterium thermoautotrophicum cocultures was studied. All cultures were grown under anaerobic conditions in batch culture at 60 degrees C. When grown on cellulose, the coculture exhibited a shorter lag before initiation and growth and celluloysis than did the monoculture. Cellulase activity appeared earlier in the coculture than in the monoculture; however, after growth had ceased, cellulase activity was greater in the monoculture. Monocultures produced primarily ethanol, acetic acid, H2 and CO2. Cocultures produced more H2 and acetic acid and less ethanol than did the monoculture. In the coculture, conversion of H2 to methane was usually complete, and most of the methane produced was derived from CO2 reduction rather than from acetate conversion. Agents of fermentation stoppage were found to be low pH and high concentrations of ethanol in the monoculture and low pH in the coculture. Fermentation of cellobiose was more rapid than that of cellulose. In cellobiose medium, the methanogen caused only slight changes in the fermentation balance of the Clostridium, and free H2 was produced.  相似文献   

16.
Clostridium thermocellum was shown to ferment glucose in a medium containing salts and 0.5% yeast extract. An active glucokinase was obtained with improved conditions for growth, assay, and preparation of cell extracts. Cell extracts appear to contain a glucokinase inhibitor that interferes with the assays at high protein concentrations. Glucokinase activity is stimulated about 60% by pretreatment with dithiothreitol. Little or no fructokinase or mannokinase activity was detected in cell extracts. The absence of glucokinase in mannitol-grown cells, the increase in glucokinase activity upon incubation of cell suspensions with glucose, and the lack of increase in activity when chloramphenical is added are evidence that glucokinase is an inducible enzyme. The following enzymes were detected in cell extracts (the enzyme activities are shown in parentheses are micromoles per minute per milligram or protein at 27 C): glucokinase (0.48), phosphoglucose isomerase (0.73), fructose 6-phosphate kinase (0.24), fructose diphosphate aldolase (0.59), glyceraldehyde 3-phosphate dehydrogenase (0.53), triose phosphate isomerase (0.13), phosphoglycerate kinase (0.20), phosphoglycerate mutase (0.20), enolase (0.28), pyruvic kinase (0.13), and lactic dehydrogenase (0.13). Glucose 6-phosphate dehydrogenase activity was absent or very low (0.0002) and 6-phosphogluconate dehydrogenase activity also was relatively low (0.015). From these data, it is proposed that carbohydrate metabolism in C. thermocellum proceeds by the Embden-Meyerhof pathway.  相似文献   

17.
The metabolic characteristics of Clostridium cellulolyticum, a mesophilic cellulolytic nonruminal bacterium, were investigated and characterized kinetically for the fermentation of cellulose by using chemostat culture analysis. Since with C. cellulolyticum (i) the ATP/ADP ratio is lower than 1, (ii) the production of lactate at low specific growth rate (mu) is low, and (iii) there is a decrease of the NADH/NAD(+) ratio and q(NADH produced)/ q(NADH used) ratio as the dilution rate (D) increases in carbon-limited conditions, the chemostats used were cellulose-limited continuously fed cultures. Under all conditions, ethanol and acetate were the main end products of catabolism. There was no shift from an acetate-ethanol fermentation to a lactate-ethanol fermentation as previously observed on cellobiose as mu increased (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, J. Bacteriol. 181:3262-3269, 1999). The acetate/ethanol ratio was always higher than 1 but decreased with D. On cellulose, glucose 6-phosphate and glucose 1-phosphate are important branch points since the longer the soluble beta-glucan uptake is, the more glucose 1-phosphate will be generated. The proportion of carbon flowing toward phosphoglucomutase remained constant (around 59.0%), while the carbon surplus was dissipated through exopolysaccharide and glycogen synthesis. The percentage of carbon metabolized via pyruvate-ferredoxin oxidoreductase decreased with D. Acetyl coenzyme A was mainly directed toward the acetate formation pathway, which represented a minimum of 27.1% of the carbon substrate. Yet the proportion of carbon directed through biosynthesis (i.e., biomass, extracellular proteins, and free amino acids) and ethanol increased with D, reaching 27.3 and 16.8%, respectively, at 0.083 h(-1). Lactate and extracellular pyruvate remained low, representing up to 1.5 and 0.2%, respectively, of the original carbon uptake. The true growth yield obtained on cellulose was higher, [50.5 g of cells (mol of hexose eq)(-1)] than on cellobiose, a soluble cellodextrin [36.2 g of cells (mol of hexose eq)(-1)]. The rate of cellulose utilization depended on the solid retention time and was first order, with a rate constant of 0.05 h(-1). Compared to cellobiose, substrate hydrolysis by cellulosome when bacteria are grown on cellulose fibers introduces an extra means for regulation of the entering carbon flow. This led to a lower mu, and so metabolism was not as distorted as previously observed with a soluble substrate. From these results, C. cellulolyticum appeared well adapted and even restricted to a cellulolytic lifestyle.  相似文献   

18.
19.
The fermentation of various saccharides derived from cellulosic biomass to ethanol was examined in mono- and cocultures of Clostridium thermocellum strain LQRI and C. thermohydrosulfuricum strain 39E. C. thermohydrosulfuricum fermented glucose, cellobiose, and xylose, but not cellulose or xylan, and yielded ethanol/acetate ratios of >7.0. C. thermocellum fermented a variety of cellulosic substrates, glucose, and cellobiose, but not xylan or xylose, and yielded ethanol/acetate ratios of ~1.0. At nonlimiting cellulosic substrate concentrations (~1%), C. thermocellum cellulase hydrolysis products accumulated during monoculture fermentation of Solka Floc cellulose and included glucose, cellobiose, xylose, and xylobiose. A stable coculture that contained nearly equal numbers of C. thermocellum and C. thermohydrosulfuricum was established that fermented a variety of cellulosic substrates, and the ethanol yield observed was twofold higher than in C. thermocellum monoculture fermentations. The metabolic basis for the enhanced fermentation effectiveness of the coculture on Solka Floc cellulose included: the ability of C. thermocellum cellulase to hydrolyze α-cellulose and hemicellulose; the enhanced utilization of mono- and disaccharides by C. thermohydrosulfuricum; increased cellulose consumption; threefold increase in the ethanol production rate; and twofold decrease in the acetate production rate. The coculture actively fermented MN300 cellulose, Avicel, Solka Floc, SO2-treated wood, and steam-exploded wood. The highest ethanol yield obtained was 1.8 mol of ethanol per mol of anhydroglucose unit in MN300 cellulose.  相似文献   

20.
Saharay M  Guo H  Smith JC 《PloS one》2010,5(10):e12947
The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号