首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Reactive oxygen species (ROS) play a critical role in peptic ulcer disease (PUD). Due to the high rate of ROS production and limited capacity for DNA repair within mitochondria, mtDNA is susceptible to oxidative damage and mutations. mtDNA deletion Δ4977 is one of the most common deletion events identified in mitochondria. We examined the association of 4977-bp mtDNA deletion with PUD. Genotypes were determined in bioptic samples of 150 PUD patients and 190 controls. The 4977-bp mtDNA deletion was found more frequently among patients with PUD (52%) than among controls (22.63%). The strong association between the mtDNA 4977-bp deletion and PUD was confirmed (OR = 3.7; 95% CI, 2.32–5.91; P = 0.0001). The 4977-bp deletion in mitochondrial DNA may be a risk factor for PUD, or may reflect an increase in oxidative stress that commonly accompanies underlying PUD disease. Larger population-based studies are needed to uncover the possible causal relationship between this deletion and peptic ulcer disease.  相似文献   

2.
How mitochondrial DNA (mtDNA) copy number is determined and modulated according to cellular demands is largely unknown. Our previous investigations of the related DNA helicases Pif1p and Rrm3p uncovered a role for these factors and the conserved Mec1/Rad53 nuclear checkpoint pathway in mtDNA mutagenesis and stability in Saccharomyces cerevisiae. Here, we demonstrate another novel function of this pathway in the regulation of mtDNA copy number. Deletion of RRM3 or SML1, or overexpression of RNR1, which recapitulates Mec1/Rad53 pathway activation, resulted in an approximately twofold increase in mtDNA content relative to the corresponding wild-type yeast strains. In addition, deletion of RRM3 or SML1 fully rescued the approximately 50% depletion of mtDNA observed in a pif1 null strain. Furthermore, deletion of SML1 was shown to be epistatic to both a rad53 and an rrm3 null mutation, placing these three genes in the same genetic pathway of mtDNA copy number regulation. Finally, increased mtDNA copy number via the Mec1/Rad53 pathway could occur independently of Abf2p, an mtDNA-binding protein that, like its metazoan homologues, is implicated in mtDNA copy number control. Together, these results indicate that signaling through the Mec1/Rad53 pathway increases mtDNA copy number by altering deoxyribonucleoside triphosphate pools through the activity of ribonucleotide reductase. This comprises the first linkage of a conserved signaling pathway to the regulation of mitochondrial genome copy number and suggests that homologous pathways in humans may likewise regulate mtDNA content under physiological conditions.  相似文献   

3.
DNA replication is tightly controlled to ensure accurate chromosome duplication and segregation in each cell cycle. Inactivation of Geminin, an inhibitor of origin licensing, leads to re-replication in human tumor cells within the same cell cycle and triggers a G(2)/M checkpoint. We find that the primary pathway to signal that re-replication has been detected is the ATR kinase and the Rad9-Rad1-Hus1 (9-1-1) clamp complex together with Rad17-RFC clamp loader. ATM kinase and the Mre11-Rad50-Nbs1 complex do not appear to play significant roles in the checkpoint. Chk1 activation occurs at early stages, whereas Chk2 activation occurs much later. Overall we conclude that ATR/Chk1 pathway is activated at an early time point after the loss of Geminin and contributes to checkpoint arrest essential for the accumulation of re-replicated cells, whereas activation of the ATM/Chk2 pathway is a by-product of DNA re-replication at a later period.  相似文献   

4.
Widdrol is an odorant compound isolated from Juniperus chinensis. We previously reported that widdrol induces Gap 1 (G1) phase cell cycle arrest and leads to apoptosis in human colon adenocarcinoma HT29 cells. It was also reported that this cell cycle arrest is associated with the induction of checkpoint kinase 2 (Chk2), p53 phosphorylation and cyclin dependent kinase (Cdk) inhibitor p21 expression. In this paper, we investigated the molecular mechanisms of widdrol on the activation of G1 DNA damage checkpoint at early phase when DNA damages occurred in HT29 cells. First of all, we examined that widdrol breaks DNA directly or not. As the results of DNA electrophoresis and formation of phosphorylated histone H2AX (γH2AX) foci in HT29 cells, widdrol generates DNA double-strand breaks directly within 0.5?h both in vitro and in vivo. Based on this result, the change of proteins related in checkpoint pathway was examined over a time course of 0.5-24?h. Treatment of HT29 cells with widdrol elicits the following: (1) phosphorylation of Chk2 and p53, (2) reduction of cell division cycle 25A (Cdc25A) expression, (3) increase of Cdk inhibitor p21 expression, and (4) decrease of the levels of Cdk2 and cyclin E expression in a time-dependent manner. Moreover, only the expression level of mini-chromosome maintenance 4 (MCM4) protein, a subunit of the eukaryotic DNA replicative helicase, is rapidly down-regulated in HT29 cells treated with widdrol over the same time course, but those of the other MCM proteins are unchanged. Overall, our results indicated that widdrol breaks DNA directly in HT29 cells, and this DNA damage results in checkpoint activation via Chk2-p53-Cdc25A-p21-MCM4 pathway and finally cells go to G1-phase cell cycle arrest and apoptosis.  相似文献   

5.
To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.  相似文献   

6.
7.
DNA damage during the cell division cycle can activate ATM/ATR and their downstream kinases that are involved in the checkpoint pathway, and cell growth is halted until damage is repaired. As a result of DNA damage induced in mitotic cells by doxorubicin treatment, cells accumulate in a G2-like phase, not in mitosis. Under these conditions, two mitosis-specific kinases, Cdk1 and Plk1, are inhibited by inhibitory phosphorylation and dephosphorylation, respectively. G2-specific phosphorylation of Cdc25 was increased during incubation after mitotic DNA damage. Inhibition of Plk1 through dephosphorylation was dependent on ATM/Chk1 activity. Depleted expression of ATM and Chk1 was achieved using small hairpin RNA (shRNA) plasmid constructs. In this condition, damaged mitotic cells did not accumulated in a G2-like stage, and entered into G1 phase without delay. Protein phosphatase 2A was responsible for dephosphorylation of mitotic Plk1 in response to DNA damage. In knockdown of PP2A catalytic subunits, Plk1 was not dephosphorylated, but rather degraded in response to DNA damage, and cells did not accumulate in G2-like phase. The effect of ATM/Chk1 inhibition was counteracted by overexpression of PP2A, indicated that PP2A may function as a downstream target of ATM/Chk1 at a mitotic DNA damage checkpoint, or may have a dominant effect on ATM/Chk1 function at this checkpoint. Finally, we have shown that negative regulation of Plk1 by dephosphorylation is important to cell accumulation in G2-like phase at the mitotic DNA damage checkpoint, and that this ATM/Chk1/PP2A pathway independent on p53 is a novel mechanism of cellular response to mitotic DNA damage.  相似文献   

8.
9.
The mutation rate of the human mtDNA deletion mtDNA4977.   总被引:3,自引:1,他引:2       下载免费PDF全文
The human mitochondrial mutation mtDNA4977 is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation fate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA4977 in cultured human cells is 5.95 x 10(-8) per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations.  相似文献   

10.
The catechins in green tea have antioxidative and antimutagenic effects. We examined the effect of green tea enriched with catechins on the presence of mitochondrial DNA (mtDNA) with a common 4977-bp deletion mutation (mtDNA4977) in human leucocytes. Ten healthy females [aged 20.80 +/- 1.03 years] drank 350 ml of catechin-rich tea daily after supper for 5 weeks. Blood samples were collected twice before, and twice after 5 weeks of consuming the tea. Deletions in mtDNA were analyzed using the nested polymerase chain reaction (PCR). We identified a common mtDNA4977 deletion in nine participants before drinking the tea. However, this mtDNA4977 deletion was not evident in leucocytes from most of the participants 5 weeks after drinking the tea. Catechins found in tea might contribute to the maintenance of health status by reducing damage to mtDNA and by maintaining the capacity of mtDNA for oxidative phosphorylation.  相似文献   

11.
Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage.  相似文献   

12.
Endometriosis is a multifactorial gynecological condition characterized by the presence of ectopic endometrial and stromal tissue outside the uterus. Free radicals and Oxidative stress have been proposed to be involved in the pathogenesis of the endometriosis. It has been shown that mitochondrial DNA (mtDNA) is particularly susceptible to oxidative damage and mutations due to the high rate of reactive oxygen species production and limited DNA repair capacity in mitochondria. While a number of deletions can occur, the most commonly studied in human is a 4977-bp deletion that removes all or parts of the genes for NADH dehydrogenase subunits 3, 4, 4L and 5, cytochrome C oxidase subunit III and ATP synthase subunits 6 and 8.” We evaluated whether mtDNA common deletion is related with the susceptibility to endometriosis in northern Iran. In this study 80 endometriosis cases and 100 controls were enrolled. Total DNA was extracted from endometrial tissue samples. The mitochondrial common deletion was determined by Gap- polymerase chain reaction (Gap-PCR). It was found that the mitochondrial common deletion was more likely to be present in patients with endometriosis. Assessing indicate that 60 % of patients and 8 % of controls show mtDNA 4977-bp deletion (Odds Ratio [OR] = 17.25, P < 0.0001, confidence interval [CI] = 5.18–57.36). The mtDNA 4977 deletion may play a role in endometriosis. Further studies with larger numbers of patients are required for further evaluation and confirmation of our finding.  相似文献   

13.
Point mutations and deletions in mitochondrial DNA (mtDNA) accumulate as a result of oxidative stress, including ionizing radiation. As a result, dysfunctional mitochondria suffer from a decline in oxidative phosphorylation and increased release of superoxides and other reactive oxygen species (ROS). Through this mechanism, mitochondria have been implicated in a host of degenerative diseases. Associated with this type of damage, and serving as a marker of total mtDNA mutations and deletions, the accumulation of a specific 4977-bp deletion, known as the common deletion (Delta-mtDNA(4977)), takes place. The Delta-mtDNA(4977) has been reported to increase with age and during the progression of mitochondrial degeneration. The purpose of this study was to investigate whether ionizing radiation induces the formation of the common deletion in a variety of human cell lines and to determine if it is associated with cellular radiosensitivity. Cell lines used included eight normal human skin fibroblast lines, a radiosensitive non-transformed and an SV40 transformed ataxia telangiectasia (AT) homozygous fibroblast line, a Kearns Sayre Syndrome (KSS) line known to contain mitochondrial deletions, and five human tumor lines. The Delta-mtDNA(4977) was assessed by polymerase chain reaction (PCR). Significant levels of Delta-mtDNA(4977) accumulated 72 h after irradiation doses of 2, 5, 10 or 20 Gy in all of the normal lines with lower response in tumor cell lines, but the absolute amounts of the induced deletion were variable. There was no consistent dose-response relationship. SV40 transformed and non-transformed AT cell lines both showed significant induction of the deletion. However, the five tumor cell lines showed only a modest induction of the deletion, including the one line that was deficient in DNA damage repair. No relationship was found between sensitivity to radiation-induced deletions and sensitivity to cell killing by radiation.  相似文献   

14.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

15.
DNA mismatch repair (MMR) deficiency in human cancers is associated with resistance to a spectrum of clinically active chemotherapy drugs, including 6-thioguanine (6-TG). We and others have shown that 6-TG-induced DNA mismatches result in a prolonged G2/M cell cycle arrest followed by apoptosis in MMR(+) human cancer cells, although the signaling pathways are not clearly understood. In this study, we found that prolonged (up to 4 days) treatment with 6-TG (3microM) resulted in a progressive phosphorylation of Chk1 and Chk2 in MMR(+) HeLa cells, correlating temporally with a drug-induced G2/M arrest. Transfection of HeLa cells with small interfering RNA (siRNA) against the ataxia telangiectasia-related (ATR) kinase or against the Chk1 kinase destroyed the G2/M checkpoint and enhanced the apoptosis following 6-TG treatment. On the other hand, the induction of a G2/M population by 6-TG was similar in ATM(-/-) and ATM(+) human fibroblasts, suggesting that the ATM-Chk2 pathway does not play a major role in this 6-TG response. Our results indicate that 6-TG DNA mismatches activate the ATR-Chk1 pathway in the MMR(+) cells, resulting in a G2/M checkpoint response  相似文献   

16.
Ribonucleotide reductase (RNR) enzyme is composed of the homodimeric RRM1 and RRM2 subunits, which together form a heterotetramic active enzyme that catalyzes the de novo reduction of ribonucleotides to generate deoxyribonucleotides (dNTPs), which are required for DNA replication and DNA repair processes. In this study, we show that ablation of RRM1 and RRM2 by siRNA induces G1/S phase arrest, phosphorylation of Chk1 on Ser345 and phosphorylation of γ-H2AX on S139. Combinatorial ablation of RRM1 or RRM2 and Chk1 causes a dramatic accumulation of γ-H2AX, a marker of double-strand DNA breaks, suggesting that activation of Chk1 in this context is essential for suppression of DNA damage. Significantly, we demonstrate for the first time that Chk1 and RNR subunits co-immunoprecipitate from native cell extracts. These functional genomic studies suggest that RNR is a critical mediator of replication checkpoint activation.  相似文献   

17.
SN1 DNA methylating agents such as the nitrosourea N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) elicit a G2/M checkpoint response via a mismatch repair (MMR) system-dependent mechanism; however, the exact nature of the mechanism governing MNNG-induced G2/M arrest and how MMR mechanistically participates in this process are unknown. Here, we show that MNNG exposure results in activation of the cell cycle checkpoint kinases ATM, Chk1, and Chk2, each of which has been implicated in the triggering of the G2/M checkpoint response. We document that MNNG induces a robust, dose-dependent G2 arrest in MMR and ATM-proficient cells, whereas this response is abrogated in MMR-deficient cells and attenuated in ATM-deficient cells treated with moderate doses of MNNG. Pharmacological and RNA interference approaches indicated that Chk1 and Chk2 are both required components for normal MNNG-induced G2 arrest. MNNG-induced nuclear exclusion of the cell cycle regulatory phosphatase Cdc25C occurred in an MMR-dependent manner and was compromised in cells lacking ATM. Finally, both Chk1 and Chk2 interact with the MMR protein MSH2, and this interaction is enhanced after MNNG exposure, supporting the notion that the MMR system functions as a molecular scaffold at the sites of DNA damage that facilitates activation of these kinases.  相似文献   

18.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

19.
The presence of DNA damage activates a conserved cellular response known as the DNA damage checkpoint pathway. This pathway induces a cell cycle arrest that persists until the damage is repaired. Consequently, the failure to arrest in response to DNA damage is associated with genomic instability. In budding yeast, activation of the DNA damage checkpoint pathway leads to a mitotic cell cycle arrest. Following the detection of DNA damage, the checkpoint signal is transduced via the Mec1 kinase, which in turn activates two kinases, Rad53 and Chk1 that act in parallel pathways to bring about the cell cycle arrest. The downstream target of Rad53 is unknown. The target of Chk1 is Pds1, an inhibitor of anaphase initiation whose degradation is a prerequisite for mitotic progression. Pds1 degradation is dependent on its ubiquitination by the anaphase-promoting complex/cyclosome ubiquitin ligase, acting in conjunction with the Cdc20 protein (APC/CCdc20). Previous studies showed that the Rad53 and Chk1 pathways independently lead to Pds1 stabilization but the mechanism for this was unknown. In the present study we show that both the Chk1 and the Rad53 pathways inhibit the APC/CCdc20-dependent ubiquitination of Pds1 but they affect different steps of the process: the Rad53 pathway inhibits the Pds1-Cdc20 interaction whereas Chk1-dependent phosphorylation of Pds1 inhibits the ubiquitination reaction itself. Finally, we show that once the DNA damage is repaired, Pds1 dephosphorylation is involved in the recovery from the checkpoint induced cell cycle arrest.  相似文献   

20.
Previous work from our laboratory has focused on mitochondrial DNA (mtDNA) repair and cellular viability. However, other events occur prior to the initiation of apoptosis in cells. Because of the importance of mtDNA in ATP production and of ATP in fuel cell cycle progression, we asked whether mtDNA damage was an upstream signal leading to cell cycle arrest. Using quantitative alkaline Southern blot technology, we found that exposure to menadione produced detectable mtDNA damage in HeLa cells that correlated with an S phase cell cycle arrest. To determine whether mtDNA damage was causatively linked to the observed cell cycle arrest, experiments were performed utilizing a MTS-hOGG1-Tat fusion protein to target the hOGG1 repair enzyme to mitochondria and enhance mtDNA repair. The results revealed that the transduction of MTS-hOGG1-Tat into HeLa cells alleviated the cell cycle block following an oxidative insult. Furthermore, mechanistic studies showed that Chk2 phosphorylation was enhanced following menadione exposure. Treatment of the HeLa cells with the hOGG1 fusion protein prior to menadione exposure resulted in an increase in the rate of Chk2 dephosphorylation. These results strongly support a direct link between mtDNA damage and cell cycle arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号