首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan "signatures of cancer."  相似文献   

2.
Profiling of glycans released from proteins is very complex and important. To enhance the detection sensitivity, chemical derivatization is required for the analysis of carbohydrates. Due to the interference of excess reagents, a simple and reliable purification method is usually necessary for the derivatized oligosaccharides. Various SPE based methods have been applied for the clean-up process. To demonstrate the differences among these methods, seven types of self-packed SPE cartridges were systematically compared in this study. The optimized conditions were determined for each type of cartridge and it was found that microcrystalline cellulose was the most appropriate SPE material for the purification of derivatized oligosaccharide. Normal phase HPLC analysis of the derivatized maltoheptaose was realized with a detection limit of 0.12 pmol (S N−1 = 3) and a recovery over 70%. With the optimized SPE method, relative quantification analysis of N-glycans from model glycoproteins were carried out accurately and over 40 N-glycans from human serum samples were determined regardless of the isomers. Due to the high stability and sensitivity, microcrystalline cellulose cartridge showed potential applications in glycomics analysis.  相似文献   

3.
Neutrophils are the most abundant white blood cells in humans and play a vital role in several aspects of the immune response. Numerous reports have implicated neutrophil glycosylation as an important factor in mediating these interactions. We report here the application of high sensitivity glycomics methodologies, including matrix assisted laser desorption ionisation (MALDI-TOF) and MALDI-TOF/TOF analyses, to the structural analysis of N- and O-linked carbohydrates released from two samples of neutrophils, prepared by two separate and geographically remote laboratories. The data produced demonstrates that the cells display a diverse range of sialylated and fucosylated complex glycans, with a high level of similarity between the two preparations.  相似文献   

4.
Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]aniline and [13C6]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.  相似文献   

5.
Lung cancer has a poor prognosis and a 5-year survival rate of 15%. Therefore, early detection is vital. Diagnostic testing of serum for cancer-associated biomarkers is a noninvasive detection method. Glycosylation is the most frequent post-translational modification of proteins and it has been shown to be altered in cancer. In this paper, high-throughput HILIC technology was applied to serum samples from 100 lung cancer patients, alongside 84 age-matched controls and significant alterations in N-linked glycosylation were identified. Increases were detected in glycans containing Sialyl Lewis X, monoantennary glycans, highly sialylated glycans and decreases were observed in core-fucosylated biantennary glycans, with some being detectable as early as in Stage I. The N-linked glycan profile of haptoglobin demonstrated similar alterations to those elucidated in the total serum glycome. The most significantly altered HILIC peak in lung cancer samples includes predominantly disialylated and tri- and tetra-antennary glycans. This potential disease marker is significantly increased across all disease groups compared to controls and a strong disease effect is visible even after the effect of smoking is accounted for. The combination of all glyco-biomarkers had the highest sensitivity and specificity. This study identifies candidates for further study as potential biomarkers for the disease.  相似文献   

6.
The study of glycosylation patterns (glycomics) in biological samples is an emerging field that can provide key insights into cell development and pathology. A current challenge in the field of glycomics is to determine how to quantify changes in glycan expression between different cells, tissues, or biological fluids. Here we describe a novel strategy, quantitation by isobaric labeling (QUIBL), to facilitate comparative glycomics. Permethylation of a glycan with (13)CH 3I or (12)CH 2DI generates a pair of isobaric derivatives, which have the same nominal mass. However, each methylation site introduces a mass difference of 0.002922 Da. As glycans have multiple methylation sites, the total mass difference for the isobaric pair allows separation and quantitation at a resolution of approximately 30000 m/Delta m. N-Linked oligosaccharides from a standard glycoprotein and human serum were used to demonstrate that QUIBL facilitates relative quantitation over a linear dynamic range of 2 orders of magnitude and permits the relative quantitation of isomeric glycans. We applied QUIBL to quantitate glycomic changes associated with the differentiation of murine embryonic stem cells to embryoid bodies.  相似文献   

7.
Ovarian cancer is difficult to diagnose in women because symptoms of the disease are often not noticed until the disease has progressed to an advanced untreatable stage. Although a serum test, CA125, is currently available to assist with monitoring treatment of ovarian cancer, this test lacks the necessary specificity and sensitivity for early detection. Therefore, better biomarkers of ovarian cancer are needed. A glycoprotein analysis approach was undertaken using high resolution Fourier transform ion cyclotron resonance mass spectrometry to analyze glycosylated proteins present in the conditioned media of ovarian cancer cell lines and in sera obtained from ovarian cancer patients and normal controls. In this study, glycosylated proteins were separated by gel electrophoresis, and individual glycoproteins were selected for glycosylation analysis and protein identification. The attached glycans from each protein were released and profiled by mass spectrometry. Glycosylation of a mucin protein and a large glycosylated protein isolated from the ES2 ovarian cancer cell line was determined to consist of mostly O-linked glycans. Four prominent glycoproteins of approximate 517, 370, 250, 163 kDa from serum samples were identified as two forms of apolipoprotein B-100, fibronectin, and immunoglobulin A1, respectively. Mass spectrometric analysis of glycans isolated from apolipoprotein B-100 (517 kD) showed the presence of small, specific O-linked oligosaccharides. In contrast, analysis of fibronectin (250 kD) and immunoglobulin A1 (163 kD) produced N-linked glycan fragments in forms that were sufficiently different from the glycans obtained from the corresponding protein band present in the normal serum samples. This study shows that not only a single protein but several are aberrantly glycosylated, and those abnormal glycosylation changes can be detected and may ultimately serve as glycan biomarkers for ovarian cancer.  相似文献   

8.
Major challenges of glycomics are to characterize a glycome and identify functional glycans as ligands for glycan-binding proteins (GBPs). To address these issues we developed a general strategy termed shotgun glycomics. We focus on glycosphingolipids (GSLs), a class of glycoconjugates that is challenging to study, recognized by toxins, antibodies and GBPs. We derivatized GSLs extracted from cells with a heterobifunctional fluorescent tag suitable for covalent immobilization. We separated fluorescent GSLs by multidimensional chromatography, quantified them and coupled them to glass slides to create GSL shotgun microarrays. Then we interrogated the microarrays with cholera toxin, antibodies and sera from individuals with Lyme disease to identify biologically relevant GSLs that we subsequently characterized by mass spectrometry. Shotgun glycomics incorporating GSLs and potentially glycoprotein-derived glycans is an approach for accessing the complex glycomes of animal cells and is a strategy for focusing structural analyses on functionally important glycans.  相似文献   

9.
The current interest in applying systems biology approaches to studying an organism's form or function promises to reveal further insights into the role of glycosylation in cells and whole organisms. This has prompted the development of a rapid, sensitive method of profiling the glycan component of both glycosphingolipids and glycoproteins from a single sample. Here we report a new mass spectrometric screening strategy for characterizing glycosphingolipid-derived oligosaccharides, which can be integrated into an existing highly sensitive glycoprotein glycomics strategy. Using ceramide glycanase to release the glycans from glycosphingolipids, this method provides a reliable profile of the glycosphingolipid-derived glycans present in a sample and has revealed new glycan structures. Glycoproteins are also efficiently recovered using this method, allowing the subsequent analysis of glycoprotein-derived glycans by mass spectrometry. The high sensitivity of this glycomic screening method allowed us to directly characterize the sialyl Le(x) epitope from mouse brain for the first time, where it was observed on an O-mannose structure. Thus, we present a mass spectrometric method that allows glycomic screening of N- and O-glycans as well as glycosphingolipid-derived glycans from a single tissue.  相似文献   

10.
A method for the rapid identification of proteins and their N-glycans was developed through the use of two parallel columns directly connected to a mass spectrometer. Both porous graphitic carbon (PGC) and C18 capillary columns were connected in parallel with two switching valves for the simultaneous analysis of glycans and peptides, respectively. To verify the efficiency of the analytical system, profiling of N-glycans and proteins from human serum was demonstrated. This method is suitable for high-throughput analysis and automation, is contamination-free for the identification of N-glycans and proteins in a complex biological sample, and can be applied to glycomics and proteomics.  相似文献   

11.
Compared with N‐linked glycosylation, the analysis of O‐GalNAc glycosylation is extremely challenging due to the high structure diversity of glycans and lack of glycosidases to release O‐GalNAc glycans. In this work, a glycoform simplification strategy by combining HILIC enrichment with chemical de‐sialylation to characterize O‐GalNAc glycosylation of human serum is presented. This method is first validated by using the bovine fetuin as the test sample. It is found that more than 90% of the sialic acid residues can be removed from bovine fetuin by the acid‐assisted de‐sialylation method, which significantly simplifies the glycan structure and improves identification sensitivity. Indeed, the number of identified peptide backbones increases nearly one fold when this strategy is used. This method is further applied to analyze the human serum sample, where 185 O‐GalNAc modified peptide sequences corresponding to 94 proteins with high confidence (FDR (false detection rate) <1%) are identified. This straight forward strategy can significantly reduce the variations of glycan structures, and is applicable to analysis of other biological samples with high complexity.  相似文献   

12.
Carbohydrate post-translational modifications on proteins are important determinants of protein function in both normal and disease biology. We have developed a method to allow the efficient, multiplexed study of glycans on individual proteins from complex mixtures, using antibody microarray capture of multiple proteins followed by detection with lectins or glycan-binding antibodies. Chemical derivatization of the glycans on the spotted antibodies prevented lectin binding to those glycans. Multiple lectins could be used as detection probes, each targeting different glycan groups, to build up lectin binding profiles of captured proteins. By profiling both protein and glycan variation in multiple samples using parallel sandwich and glycan-detection assays, we found cancer-associated glycan alteration on the proteins MUC1 and CEA in the serum of pancreatic cancer patients. Antibody arrays for glycan detection are highly effective for profiling variation in specific glycans on multiple proteins and should be useful in diverse areas of glycobiology research.  相似文献   

13.
Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.  相似文献   

14.
CE–MS glycoproteomics and glycomics. In intact methods, the glycans are identified while attached to the entire protein backbone, exposing the glycosylation profile and providing information on the macro-heterogeneity and site occupancy. In middle-up and bottom-up analysis, the protein is digested into sububits or smaller peptide fragments, revealing specific glycoforms and elucidating micro-heterogeneity in a site-specific approach. In released glycans techniques, the glycans are completely released from the protein molecule through chemical or enzymatic means. Unlike the middle-up and bottom-up techniques, released glycans do not offer site-specific information, but can achieve excellent levels of sensitivity in glycan microheterogeneity identification.
  1. Download : Download high-res image (82KB)
  2. Download : Download full-size image
  相似文献   

15.
An LC-MS-based approach is presented for the identification and quantification of proteins from unsequenced organisms. The method relies on the preservation of homology across species and the similarity in detection characteristics of proteomes in general. Species related proteomes share similarity that progresses from the amino acid frequency distribution to the complete amino sequence of matured proteins. Moreover, the comparative analysis between theoretical and experimental proteome distributions can be used as a measure for the correctness of detection and identification obtained through LC-MS-based schemes. Presented are means to the identification and quantification of rabbit myocardium proteins, immediately after inducing cardiac arrest, using a data-independent LC-MS acquisition strategy. The employed method of acquisition affords accurate mass information on both the precursor and associated product ions, whilst preserving and recording the intensities of the ions. The latter facilitates label-free quantification. The experimental ion density observations obtained for the rabbit sub proteome were found to share great similarity with five other mammalian samples, including human heart, human breast tissue, human plasma, rat liver and a mouse cell line. Redundant, species-homologues peptide identifications from other mammalian organisms were used for initial protein identification, which were complemented with peptide identifications of translated gene sequences. The feasibility and accuracy of label-free quantification of the identified peptides and proteins utilizing above mentioned strategy is demonstrated for selected cardiac rabbit proteins.  相似文献   

16.
Protein glycosylation, the most universal and diverse post-translational modification, can affect protein secretion, stability, and immunogenicity. The structures of glycans attached to proteins are quite diverse among different organisms and even within yeast species. In yeast, protein glycosylation plays key roles in the quality control of secretory proteins, and particularly in maintaining cell wall integrity. Moreover, in pathogenic yeasts, glycans assembled on cell-surface glycoproteins can mediate their interactions with host cells. Thus, a comprehensive understanding of protein glycosylation in various yeast species and defining glycan structure characteristics can provide useful information for their biotechnological and clinical implications. Yeast-specific glycans are a target for glyco-engineering; implementing human-type glycosylation pathways in yeast can aid the production of recombinant glycoproteins with therapeutic potential. The virulenceassociated glycans of pathogenic yeasts could be exploited as novel targets for antifungal agents. Nowadays, several glycomics techniques facilitate the generation of species-and strain-specific glycome profiles and the delineation of modified glycan structures in mutant and engineered yeast cells. Here, we present the protocols employed in our laboratory to investigate the N-and O-glycan chains released from purified glycoproteins or cell wall mannoproteins in several yeast species.  相似文献   

17.

Background  

Novel molecular and statistical methods are in rising demand for disease diagnosis and prognosis with the help of recent advanced biotechnology. High-resolution mass spectrometry (MS) is one of those biotechnologies that are highly promising to improve health outcome. Previous literatures have identified some proteomics biomarkers that can distinguish healthy patients from cancer patients using MS data. In this paper, an MS study is demonstrated which uses glycomics to identify ovarian cancer. Glycomics is the study of glycans and glycoproteins. The glycans on the proteins may deviate between a cancer cell and a normal cell and may be visible in the blood. High-resolution MS has been applied to measure relative abundances of potential glycan biomarkers in human serum. Multiple potential glycan biomarkers are measured in MS spectra. With the objection of maximizing the empirical area under the ROC curve (AUC), an analysis method was considered which combines potential glycan biomarkers for the diagnosis of cancer.  相似文献   

18.
Cell surface glycans and recognition molecules of these glycans play important roles in cellular recognition and trafficking, such as in the inflammation response by sialyl LewisX oligosaccharides. Malignant cells also utilize a similar mechanism during colonization and establishment of tumor tissues in the host. These considerations prompt us to develop a screening method for comprehensive analysis of N-glycans derived from membrane fractions of cancer cells. The method involves two step separations. Initially, N-glycans released from cell membrane fractions with N-glycoamidase F were labeled with 2-aminobenzoic acid and separated based on the number of sialic acid residues attached to the oligosaccharides using affinity chromatography on a serotonin-immobilized stationary phase. Each of the nonretarded fractions containing asialo- and high-mannose type oligosaccharides and mono-, di-, tri-, and tetra-sialooligosaccharide fractions which were desialylated with neuraminidase was analyzed by a combination of HPLC using an Amide-80 column as the stationary phase and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We analyzed total N-glycan pools of membrane fractions obtained from some cancer cells, and found that U937 cells (Histocytic lymphoma cells) expressed a large amount of oligosaccharides having polylactosamine residues and MKN45 cells (Gastric adenocarcinoma cells) contained hyper-fucosylated oligosaccharides which contained multiple fucose residues. The method described here will be a powerful technique for glycomics studies in cell surface glycoproteins, and will enable one to search marker oligosaccharides characteristically observed in various diseases such as cancer, inflammation, and congenital disorder.  相似文献   

19.
This paper presents computational methods to analyze MALDI-TOF mass spectrometry data for quantitative comparison of peptides and glycans in serum. The methods are applied to identify candidate biomarkers in serum samples of 203 participants from Egypt; 73 hepatocellular carcinoma (HCC) cases, 52 patients with chronic liver disease (CLD) consisting of cirrhosis and fibrosis cases, and 78 population controls. Two complementary sample preparation methods were applied prior to generating mass spectra: (1) low molecular weight (LMW) enrichment of each serum sample was carried out for MALDI-TOF quantification of peptides, and (2) glycans were enzymatically released from proteins in each serum sample and permethylated for MALDI-TOF quantification of glycans. A peak selection algorithm was applied to identify the most useful peptide and glycan peaks for accurate detection of HCC cases from high-risk population of patients with CLD. In addition to global peaks selected by the whole population based approach, where identically labeled patients are treated as a single group, subgroup-specific peaks were identified by searching for peaks that are differentially abundant in a subgroup of patients only. The peak selection process was preceded by peak screening, where we eliminated peaks that have significant association with covariates such as age, gender, and viral infection based on the peptide and glycan spectra from population controls. The performance of the selected peptide and glycan peaks was evaluated in terms of their ability in detecting HCC cases from patients with CLD in a blinded validation set and through the cross-validation method. Finally, we investigated the possibility of using both peptides and glycans in a panel to enhance the diagnostic capability of these candidate markers. Further evaluation is needed to examine the potential clinical utility of the candidate peptide and glycan markers identified in this study.  相似文献   

20.
We present a detailed protocol for the structural analysis of protein-linked glycans. In this approach, appropriate for glycomics studies, N-linked glycans are released using peptide N-glycosidase F and O-linked glycans are released by reductive alkaline beta-elimination. Using strategies based on mass spectrometry (matrix-assisted laser desorption/ionization-time of flight mass spectrometry and nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS-MS)), chemical derivatization, sequential exoglycosidase digestions and linkage analysis, the structures of the N- and/or O-glycans are defined. This approach can be used to study the glycosylation of isolated complex glycoproteins or of numerous glycoproteins encountered in a complex biological medium (cells, tissues and physiological fluids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号