首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Human pathologies often originate from molecular disorders. Therefore, imaging technology as one of the bases for the identification and understanding of pathologies must provide views of single molecules at subnanometer resolution. Membrane proteins mediate many of life's most important processes, and their malfunction is often lethal or leads to severe disease. The membrane proteins aquaporin-0 (AQP0) and connexons form junctional microdomains between healthy lens core cells in which AQP0 form square arrays surrounded by connexons. Malfunction of both proteins results in the formation of cataract. We have used high-resolution atomic force microscopy (AFM) to image junctional microdomains in membranes from an individual human eye lens with senile cataract. Images at subnanometer resolution report individual helix-connecting loops of four amino acid residues on the AQP0 surface. We describe the supramolecular assembly and the conformational state of AQP0 in junctional microdomains, where a mixture of truncated junctional and full-length water channel AQP0 form square arrays. Imaging of microdomain borders revealed individual AQP0 tetramers and no associated connexon, indicating a lack of metabolite transport, waste accumulation, and enlarged regions of non-adhering membranes, causing cataract in this individual. This first high-resolution view of the membrane of this pathological human tissue provides insights into cataract pathology at the single membrane protein level, and indicates the power of the AFM as a future tool in medical imaging at subnanometer resolution.  相似文献   

2.
Aquaporin-0 (AQP0) is the most prevalent intrinsic protein in the plasma membrane of lens fiber cells where it functions as a water selective channel and also participates in fiber-fiber adhesion. We report the 3D envelope of purified AQP0 reconstituted with random orientation in phospholipid bilayers as single particles. The envelope was obtained by combining freeze-fracture, shadowing and random conical tilt electron microscopy followed by single particle image processing. Two-dimensional analysis of 2547 untilted images produced eight class averages exhibiting "square" and "octagonal" shapes with a continuum of variation. We reconstructed in 3D five class averages that best described the data set. The reconstructions ("molds") appeared as metal cups exhibiting external and internal surfaces. We used the internal surface of the mold to calculate the "imprints" that represent the AQP0 particles protruding from the hydrophobic core of the phospholipid bilayer. The complete envelope of the channel, formed by joining the square and octagonal imprints, described accurately the size, shape, oligomeric state, orientation, and molecular weight of the AQP0 channel inserted in the phospholipid bilayer. Rigid body docking of the atomic model of the aquaporin-1 (AQP1) tetramer showed that the freeze-fracture envelope accounted for the conserved transmembrane domain (approximately 73% similarity between AQP0 and AQP1) but not for the amino and carboxyl termini. We suggest that the discrepancy might reflect differences in the location of the amino and carboxyl termini in the crystal and in the phospholipid bilayer.  相似文献   

3.
Membrane proteins perform many essential cellular functions. Over the last years, substantial advances have been made in our understanding of the structure and function of isolated membrane proteins. However, like soluble proteins, many membrane proteins assemble into supramolecular complexes that perform specific functions in specialized membrane domains. Since supramolecular complexes of membrane proteins are difficult to study by conventional approaches, little is known about their composition, organization and assembly. The high signal-to-noise ratio of the images that can be obtained with an atomic force microscope (AFM) makes this instrument a powerful tool to image membrane protein complexes within native membranes. Recently, we have reported high-resolution topographs of junctional microdomains in native eye lens membranes containing two-dimensional (2D) arrays of aquaporin-0 (AQP0) surrounded by connexons. While both proteins are involved in cell adhesion, AQP0 is a specific water channel whereas connexons form cell–cell communication channels with broad substrate specificity. Here, we have performed a detailed analysis of the supramolecular organization of AQP0 tetramers and connexon hexamers in junctional microdomains in the native lens membrane. We present first structural models of these junctional microdomains, which we generated by docking atomic models of AQP0 and connexons into the AFM topographs. The AQP0 2D arrays in the native membrane show the same molecular packing of tetramers seen in highly ordered double-layered 2D crystals obtained through reconstitution of purified AQP0. In contrast, the connexons that surround the AQP0 arrays are only loosely packed. Based on our AFM observations, we propose a mechanism that may explain the supramolecular organization of AQP0 and connexons in junctional domains in native lens membranes.  相似文献   

4.
Aquaporin-1 (AQP1) is the first functionally identified aquaporin of a growing family of membrane water channels found in all forms of life. Recently, a possible secondary function as a cyclic guanosine monophosphate (cGMP) gated ion channel was attributed to AQP1. We have reconstituted purified protein from bovine and human red blood cell membranes into highly ordered 2D crystals. The topography of both AQP1s was determined by electron microscopy from freeze-dried, unidirectionally metal-shadowed 2D crystals as well as from surface topographs of native crystals recorded in buffer solution with the atomic force microscope (AFM). In spite of the high level of sequence homology between bovine and human AQP1, the surfaces showed distinct differences. Alignment of both sequences and comparison of the acquired surface topographies with the atomic model of human AQP1 revealed the topographic changes on the surface of bovine AQP1 to be induced by a few amino acid substitutions. A striking degree of sequence homology was found between the carboxyl-terminal domains of AQP1s from different organisms and EF-hands from Ca2+-binding proteins belonging to the calmodulin superfamily, suggesting the existence of a Ca2+-binding site at the C terminus of AQP1 instead of the putative cGMP-binding site reported previously. To unveil its position on the acquired surface topographies, 2D crystals of AQP1 were digested with carboxypeptidase Y, which cleaves off the intracellular C terminus. Difference maps of AFM topographs between the native and the peptidase-treated AQP1s showed the carboxylic tail to be close to the 4-fold symmetry axis of the tetramer. SDS-PAGE and matrix-assisted laser desorption/ionisation mass spectrometry of native and decarboxylated bovine and human AQP1 revealed that the EF-hand motif found at the C terminus of AQP1 was partially resistant to peptidase digestion. The importance of the C-terminal domain is implicated by structural instability of decarboxylated AQP1. A possible role of the C terminus and calcium in translocation of AQP1 in cholangiocytes from intracellular vesicles to the plasma membrane and in triggering its fusion is discussed. Functional studies are now required to identify the physiological role of the Ca2+-binding site.  相似文献   

5.
The plasma membrane assembly of aquaporin-4 (AQP4) water channels into orthogonal arrays of particles (OAPs) involves interactions of AQP4 N-terminal domains. To study in live cells the site of OAP assembly, the size and dynamics of plasma membrane OAPs, and the heterotetrameric associations of AQP4, we constructed green fluorescent protein (GFP)-labeled AQP4 “long” (M1) and “short” (M23) isoforms in which GFP was inserted at the cytoplasm-facing N or C terminus or between Val-141 and Val-142 in the second extracellular loop of AQP4. The C-terminal and extracellular loop GFP insertions did not interfere with the rapid unrestricted membrane diffusion of GFP-labeled M1 or the restricted diffusion and OAP assembly of GFP-labeled M23. Photobleaching of brefeldin A-treated cells showed comparable and minimally restricted diffusion of M1 and M23, indicating that OAP assembly occurs post-endoplasmic reticulum. Single-molecule step photobleaching and intensity analysis of GFP-labeled M1 in the absence versus presence of excess unlabeled M1 or M23 with an OAP-disrupting mutation indicated heterotetrameric AQP4 association. Time-lapse total internal reflection fluorescence imaging of M23 in live cells at 37 °C indicated that OAPs diffuse slowly (D ∼ 10−12 cm2/s) and rearrange over tens of minutes. Our biophysical measurements in live cells thus reveal extensive AQP4 monomer-monomer and tetramer-tetramer interactions.  相似文献   

6.

Background

Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions.

Methods

The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2–6 (AQP0-N-del-2-6), AA235–263 (AQP0-1-234), AA239–263 (AQP0-1-238), AA244–263 (AQP0-1-243), AA247–263 (AQP0-1-246), AA250–263 (AQP0-1-249) and AA260–263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays.

Results

AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263).

Conclusions

Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens.

General significance

Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.  相似文献   

7.
Intermittent contact mode atomic force microscopy (AFM) was used to visualize the native plasma membrane of Xenopus laevis oocytes. Oocyte membranes were purified via ultracentrifugation on a sucrose gradient and adsorbed on mica leaves. AFM topographs and the corresponding phase images allowed for visualization and identification of both oocyte plasma membrane patches and pure lipid bilayer regions with a height of about 5 nm within membrane patches. The quantitative analysis showed a normal distribution for the lateral dimension and height of the protein complexes centered on 16.7 ± 0.2 nm (mean ± SE, n = 263) and 5.4 ± 0.1 nm (n = 262), respectively. The phase signal, providing material-dependent information, allowed for the recognition of structural features observed in AFM topographs.  相似文献   

8.
HDL is a population of apoA-I-containing particles inversely correlated with heart disease. Because HDL is a soft form of matter deformable by thermal fluctuations, structure determination has been difficult. Here, we compare the recently published crystal structure of lipid-free (Δ185-243)apoA-I with apoA-I structure from models and molecular dynamics (MD) simulations of discoidal HDL. These analyses validate four of our previous structural findings for apoA-I: i) a baseline double belt diameter of 105 Å ii) central α helixes with an 11/3 pitch; iii) a “presentation tunnel” gap between pairwise helix 5 repeats hypothesized to move acyl chains and unesterified cholesterol from the lipid bilayer to the active sites of LCAT; and iv) interchain salt bridges hypothesized to stabilize the LL5/5 chain registry. These analyses are also consistent with our finding that multiple salt bridge-forming residues in the N-terminus of apoA-I render that conserved domain “sticky.” Additionally, our crystal MD comparisons led to two new hypotheses: i) the interchain leucine-zippers previously reported between the pair-wise helix 5 repeats drive lipid-free apoA-I registration; ii) lipidation induces rotations of helix 5 to allow formation of interchain salt bridges, creating the LCAT presentation tunnel and “zip-locking” apoA-I into its full LL5/5 registration.  相似文献   

9.

Background

Coronary bronchial artery fistulas (CBFs) are rare anomalies, which may be isolated or associated with other disorders.

Materials and methods

Two adult patients with CBFs are described and a PubMed search was performed using the keywords “coronary bronchial artery fistulas” in the period from 2008 to 2013.

Results

Twenty-seven reviewed subjects resulting in a total of 31 fistulas were collected. Asymptomatic presentation was reported in 5 subjects (19 %), chest pain (n = 17) was frequently present followed by haemoptysis (n = 7) and dyspnoea (n = 5). Concomitant disorders were bronchiectasis (44 %), diabetes (33 %) and hypertension (28 %). Multimodality and single-modality diagnostic strategies were applied in 56 % and 44 %, respectively. The origin of the CBFs was the left circumflex artery in 61 %, the right coronary artery in 36 % and the left anterior descending artery in 3 %. Management was conservative (22 %), surgical ligation (11 %), percutaneous transcatheter embolisation (30 %), awaiting lung transplantation (7 %) or not reported (30 %).

Conclusions

CBFs may remain clinically silent, or present with chest pain or haemoptysis. CBFs are commonly associated with bronchiectasis and usually require a multimodality approach to be diagnosed. Several treatment strategies are available. This report presents two adult cases with CBFs and a review of the literature.  相似文献   

10.
11.
Approximately 1% of known protein structures display knotted configurations in their native fold, but the function of these configurations is not understood. It has been speculated that the entanglement may inhibit mechanical protein unfolding or transport, e.g., as in cellular threading or translocation processes through narrow biological pores. Protein knot manipulation, e.g., knot tightening and localization, has become possible in single-molecule experiments. Here, we investigate tight peptide knot (TPK) characteristics in detail by pulling selected 31 and 41-knotted peptides using all-atom molecular dynamics computer simulations. We find that the 31- and 41-TPK lengths are typically Δl ≈ 47± 4 Å and 69 ± 4 Å, respectively, for a wide range of tensions (0.1 nN ≲ F ≲ 1.5 nN). The 41-knot length is in agreement with recent atomic force microscopy pulling experiments. Calculated TPK radii of gyration point to a pore diameter of ∼20 Å, below which a translocated knotted protein might get stuck. TPK characteristics, however, may be sequence-specific: we find a different size and structural behavior in polyglycines, and, strikingly, a strong hydrogen bonding and water trapping capability of hydrophobic TPKs. Water capture and release is found to be controllable by the tightening force in a few cases. These mechanisms result in a sequence-specific “locking” and metastability of TPKs, which might lead to a blocking of knotted peptide transport at designated sequence positions. We observe that macroscopic tight 41-knot structures are reproduced microscopically (“figure of eight” versus the “pretzel”) and can be tuned by sequence, in contrast to mathematical predictions. Our findings may explain a function of knots in native proteins, challenge previous studies on macromolecular knots, and prove useful in bio- and nanotechnology.  相似文献   

12.
An important step in determining the three-dimensional structure of single macromolecules is to bring common features in the images into register through alignment and classification. Here, we took advantage of the striking computational properties of the Kohonen self-organizing map (SOM) to align and classify images of channels obtained by random conical geometry into more homogeneous subsets. First, we used simulations with artificially created images to deduce simple geometrical rules governing the mapping of bounded (differing in size and shape) and unbounded (differing in in-plane orientation) variations in the output plane. Second, we measured the effect of noise on the accuracy of the algorithm to separate homogeneous subsets. Finally, we applied the rules ascertained in the previous steps to separate freeze-fracture images of the cytoplasmic and external domains of the small (approximately 118 kDa) aquaporin-0 water channel. Comparison with the results obtained from a similar input set using alignment-through-classification showed that both methods converged to stable classes exhibiting the same overall shapes (tetragonal and octagonal) for the cytoplasmic and external views of the channel. Processing with the SOM, however, was simplified by the utilization of the geometric rules governing the mapping of bounded and unbounded variations as well as the lack of subjectivity in selecting the reference images during alignment.  相似文献   

13.

Background

The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.

Scope of review

The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.

Major conclusions

Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.

General significance

Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.  相似文献   

14.
KirBac3.1 belongs to a family of transmembrane potassium (K+) channels that permit the selective flow of K-ions across biological membranes and thereby regulate cell excitability. They are crucial for a wide range of biological processes and mutations in their genes cause multiple human diseases. Opening and closing (gating) of Kir channels may occur spontaneously but is modulated by numerous intracellular ligands that bind to the channel itself. These include lipids (such as PIP2), G-proteins, nucleotides (such as ATP) and ions (e.g. H+, Mg2+, Ca2+). We have used high-resolution atomic force microscopy (AFM) to examine KirBac3.1 in two different configurations. AFM imaging of the cytoplasmic surface of KirBac3.1 embedded in a lipid bilayer has allowed visualization of the tetrameric assembly of the ligand-binding domain. In the absence of Mg2+, the four subunits appeared as four protrusions surrounding a central depression corresponding to the cytoplasmic pore. They did not display 4-fold symmetry, but formed a dimer-of-dimers with 2-fold symmetry. Upon addition of Mg2+, a marked rearrangement of the intracellular ligand-binding domains was observed: the four protrusions condensed into a single protrusion per tetramer, and there was an accompanying increase in protrusion height. The central cavity within the four intracellular domains also disappeared on addition of Mg2+, indicating constriction of the cytoplasmic pore. These structural changes are likely transduced to the transmembrane helices, which gate the K+ channel. This is the first time AFM has been used as an interactive tool to study K+ channels. It has enabled us to directly measure the conformational changes in the protein surface produced by ligand binding.  相似文献   

15.
Integrin αIIbβ3 is the major membrane protein and adhesion receptor at the surface of blood platelets, which after activation plays a key role in platelet plug formation in hemostasis and thrombosis. Small angle neutron scattering (SANS) and shape reconstruction algorithms allowed formation of a low resolution three-dimensional model of whole αIIbβ3 in Ca2+/detergent solutions. Model projections after 90° rotation along its long axis show an elongated and “arched” form (135°) not observed before and a “handgun” form. This 20-nm-long structure is well defined, despite αIIbβ3 multidomain nature and expected segmental flexibility, with the largest region at the top, followed by two narrower and smaller regions at the bottom. Docking of this SANS envelope into the high resolution structure of αIIbβ3, reconstructed from crystallographic and NMR data, shows that the solution structure is less constrained, allows tentative assignment of the disposition of the αIIb and β3 subunits and their domains within the model, and points out the structural analogies and differences of the SANS model with the crystallographic models of the recombinant ectodomains of αIIbβ3 and αVβ3 and with the cryo-electron microscopy model of whole αIIbβ3. The ectodomain is in the bent configuration at the top of the model, where αIIb and β3 occupy the concave and convex sides, respectively, at the arched projection, with their bent knees at its apex. It follows the narrower transmembrane region and the cytoplasmic domains at the bottom end. αIIbβ3 aggregated in Mn2+/detergent solutions, which impeded to get its SANS model.  相似文献   

16.
Fragmin/protamine microparticles (F/P MPs) have been used as carriers for the preservation and activation of cytokines in human plasma (HP)–Dulbecco’s modified Eagle’s medium (DMEM) gels. This study investigated a three-dimensional (3D) culture system using an HP–DMEM gel with 0.1 mg/mL F/P MPs and 5 ng/mL FGF-2 for the proliferation of human dermal fibroblast cells (DFCs), human microvascular endothelial cells (MVECs) and human coronary smooth muscle cells (SMCs), or 5 ng/mL interleukin (IL)-3/granulocyte-macrophage colony-stimulating factor (GM-CSF) for a human hematopoietic cell line (TF-1 cells). DFCs, MVECs, SMCs and TF-1 cells grew rapidly under 3D culture conditions using a low-concentration HP (2 %)–DMEM gel with F/P MPs and FGF-2 (for DFCs, MVECs and SMCs) or IL-3/GM-CSF (for TF-1 cells) at doubling times of 22, 23, 25 and 18 h, respectively, without the use of animal serum, compared to under 2D culture conditions using low-concentration human serum (2 %)–DMEM with 5 ng/mL FGF-2 or IL-3/GM-CSF on F/P MP-coated plates at doubling times of approximately 26, 25, 40 and 20 h, respectively.  相似文献   

17.
Extracellular nucleotides acting via P2 receptors play important roles in cardiovascular physiology/pathophysiology. Pyrimidine nucleotides activate four G protein-coupled P2Y receptors (P2YRs): P2Y2 and P2Y4 (UTP-activated), P2Y6, and P2Y14. Previously, we showed that uridine 5′-triphosphate (UTP) activating P2Y2R reduced infarct size and improved mouse heart function after myocardial infarct (MI). Here, we examined the cardioprotective role of P2Y2R in vitro and in vivo following MI using uridine-5′-tetraphosphate δ-phenyl ester tetrasodium salt (MRS2768), a selective and more stable P2Y2R agonist. Cultured rat cardiomyocytes pretreated with MRS2768 displayed protection from hypoxia [as revealed by lactate dehydrogenase (LDH) release and propidium iodide (PI) binding], which was reduced by P2Y2R antagonist, AR-C118925 (5-((5-(2,8-dimethyl-5H-dibenzo[a,d][7]annulen-5-yl)-2-oxo-4-thioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-N-(1H-tetrazol-5-yl)furan-2-carboxamide). In vivo, echocardiography and infarct size staining of triphenyltetrazolium chloride (TTC) in 3 groups of mice 24 h post-MI: sham, MI, and MI+MRS2768 indicated protection. Fractional shortening (FS) was higher in MRS2768-treated mice than in MI alone (40.0 ± 3.1 % vs. 33.4 ± 2.7 %, p < 0.001). Troponin T and tumor necrosis factor-α (TNF-α) measurements demonstrated that MRS2768 pretreatment reduced myocardial damage (p < 0.05) and c-Jun phosphorylation increased. Thus, P2Y2R activation protects cardiomyocytes from hypoxia in vitro and reduces post-ischemic myocardial damage in vivo.  相似文献   

18.
Polymerase δ‐interacting protein 2 (POLDIP2, PDIP38) is a multifaceted, “moonlighting” protein, involved in binding protein partners from many different cellular processes, including mitochondrial metabolism and DNA replication and repair. How POLDIP2 interacts with many different proteins is unknown. Towards this goal, we present the crystal structure of POLDIP2 to 2.8 Å, which exhibited a compact two‐domain β‐strand‐rich globular structure, confirmed by circular dichroism and small angle X‐ray scattering approaches. POLDIP2 comprised canonical DUF525 and YccV domains, but with a conserved domain linker packed tightly, resulting in an “extended” YccV module. A central channel was observed, which we hypothesize could influence structural changes potentially mediated by redox conditions, following observation of a modified cysteine residue in the channel. Unstructured regions were rebuilt by ab initio modelling to generate a model of full‐length POLDIP2. Molecular dynamics simulations revealed a highly dynamic N‐terminal region tethered to the YccV‐domain by an extended linker, potentially facilitating interactions with distal binding partners. Models of POLDIP2 complexed with two of its partners, PrimPol and PCNA, indicated that dynamic flexibility of the POLDIP2 N‐terminus and loop regions likely mediate protein interactions.  相似文献   

19.
The pioneering work of Ramachandran and colleagues emphasized the dominance of steric constraints in specifying the structure of polypeptides. The ubiquitous Ramachandran plot of backbone dihedral angles (φ and ψ) defined the allowed regions of conformational space. These predictions were subsequently confirmed in proteins of known structure. Ramachandran and colleagues also investigated the influence of the backbone angle τ on the distribution of allowed φ/ψ combinations. The “bridge region” (φ ≤ 0° and −20° ≤ ψ ≤ 40°) was predicted to be particularly sensitive to the value of τ. Here we present an analysis of the distribution of φ/ψ angles in 850 non-homologous proteins whose structures are known to a resolution of 1.7 Å or less and sidechain B-factor less than 30 Å2. We show that the distribution of φ/ψ angles for all 87,000 residues in these proteins shows the same dependence on τ as predicted by Ramachandran and colleagues. Our results are important because they make clear that steric constraints alone are sufficient to explain the backbone dihedral angle distributions observed in proteins. Contrary to recent suggestions, no additional energetic contributions, such as hydrogen bonding, need be invoked.  相似文献   

20.
Phosphorylation of Ser180 in cytoplasmic loop D has been shown to reduce the water permeability of aquaporin (AQP) 4, the predominant water channel in the brain. However, when the structure of the S180D mutant (AQP4M23S180D), which was generated to mimic phosphorylated Ser180, was determined to 2.8 Å resolution using electron diffraction patterns, it showed no significant differences from the structure of the wild-type channel. High-resolution density maps usually do not resolve protein regions that are only partially ordered, but these can sometimes be seen in lower-resolution density maps calculated from electron micrographs. We therefore used images of two-dimensional crystals and determined the structure of AQP4M23S180D at 10 Å resolution. The features of the 10-Å density map are consistent with those of the previously determined atomic model; in particular, there were no indications of any obstruction near the cytoplasmic pore entrance. In addition, water conductance measurements, both in vitro and in vivo, show the same water permeability for wild-type and mutant AQP4M23, suggesting that the S180D mutation neither reduces water conduction through a conformational change nor reduces water conduction by interacting with a protein that would obstruct the cytoplasmic channel entrance. Finally, the 10-Å map shows a cytoplasmic density in between four adjacent tetramers that most likely represents the association of four N termini. This finding supports the critical role of the N terminus of AQP4 in the stabilization of orthogonal arrays, as well as their interference through lipid modification of cysteine residues in the longer N-terminal isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号