首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 858 毫秒
1.
The effects of long term exposure to suboptimal growth temperature on the photosynthetic apparatus of Dunaliella tertiolecta Butcher were investigated using carbon fixation rate versus irradiance curves and the variable fluorescence induction method. Carbon fixation rates per unite chlorophyll a at saturating (pBm) and subsaturating (αB) irradiances were 55% and 39% lower, respectively, at 12° C than at 20° C. Chlorophyll a quotas and the spectrally averaged in vivo absorption cross section normalized to chlorophyll a (a*) were not significantly different at these two temperatures. Analysis of the fluorescence kinetics revealed 1) no significant variations of the amount of PSII photoactive reaction centers per unit chlorophyll a, 2) a 14% decrease of the PSII quantum yield(+) and 3) a 29% decrease of the energy transfer efficiency between the light harvesting chlorophyll a pigment bed and the PSII reaction centers. The decrease in energy transfer efficiency between the antennae and the PSII reaction centers at 12° C was interpreted as a mechanism to avoid photoinhibition.  相似文献   

2.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):443-451
Redox titration of the electrochromic carotenoid band shift, detected at 50 μs after a saturating actinic flash, in spinach chloroplasts, shows that only one electron acceptor in Photosystem II participates in a transmembrane primary electron transfer. This species, the primary quinone acceptor, Q, shows only one midpoint potential (Em,7.5) of approx. 0 V and is undoubtedly equivalent to the fluorescence quencher, QH. A second titration wave is observed at low potential (Em,7.5 ? ? 240 mV) and at greater than 3 ms after a saturating actinic flash. This wave has an action spectrum different from that of Photosystem II centers containing Q and could arise from a secondary but not primary electron transfer. A low-potential fluorescence quencher is observed in chloroplasts which largely disappears in a single saturating flash at ? 185 mV and which does not participate in a transmembrane electron transfer. This low-potential quencher (probably equivalent to fluorescence quencher, QL) and Q are altogether different species. Redox titration of C550 shows that if electron acceptor Qβ is indeed characterized by an Em,7 of + 120 mV, then this acceptor does not give rise to a C550 signal upon reduction and does not participate in a transmembrane electron transfer. This titration also shows that C550 is not associated with QL.  相似文献   

3.
The fluorescence decay of chlorophyll in spinach thylakoids was measured as a function of the degree of closure of Photosystem II reaction centers, which was set for the flowed sample by varying either the preillumination by actinic light or the exposure of the sample to the exciting pulsed laser light. Three exponential kinetic components originating in Photosystem II were fitted to the decays; a fourth component arising from Photosystem I was determined to be negligible at the emission wavelength of 685 nm at which the fluorescence decays were measured. Both the lifetimes and the amplitudes of the components vary with reaction center closure. A fast (170–330 ps) component reflects the trapping kinetics of open Photosystem II reaction centers capable of reducing the plastoquinone pool; its amplitude decreases gradually with trap closure, which is incompatible with the concept of photosynthetic unit connectivity where excitation energy which encounters a closed trap can find a different, possibly open one. For a connected system, the amplitude of the fast fluorescence component is expected to remain constant. The slow component (1.7–3.0 ns) is virtually absent when the reaction centers are open, and its growth is attributable to the appearance of closed centers. The middle component (0.4–1.7 ns) with approximately constant amplitude may originate from centers that are not functionally linked to the plastoquinone pool. To explain the continuous increase in the lifetimes of all three components upon reaction center closure, we propose that the transmembrane electric field generated by photosynthetic turnover modulates the trapping kinetics in Photosystem II and thereby affects the excited state lifetime in the antenna in the trap-limited case.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PQ plastoquinone - PSI and PSII Photosystem I and II - QA and QB primary and secondary quinone acceptor of PSII  相似文献   

4.
The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (F(m), PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (F(o), PSII centers open) decreased the quantum efficiency of PSII proportionally. For both F(m) and F(o), the non-photochemical quenching expressed as F/F' - 1 (with F' the quenched level) was proportional to the DT concentration. However, the quenching of F(o) relative to that of F(m) was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters.  相似文献   

5.
In etiolated leaves, saturating flash of 200 ms induces phototransformation of protochlorophyllide (Pchlide) F655 into chlorophyllide (Chlide), then into Chl through reactions which do not need light sensibilisation. The synthesis of Chl is known to be slowed down in etiolated leaves exposed to desiccation stress. In order to analyse the intensity and time-course of Chlide transformation into Chl, we used the fluorescence emission of etiolated leaves previously exposed to a 200 ms saturating flash. We used low-temperature fluorescence spectroscopy to reveal the inhibition site of Chl synthesis in etiolated barley leaves exposed to water stress. Shibata shift appears as the main target point of the water deficit. It was found that water deficit inhibits partially active Pchlide F655 regeneration. Also, esterification of Chlide into Chl is impaired. It appears that these inhibitory effects alter the appearance of PSII active reaction centres.  相似文献   

6.
Treatment with the herbicide acifluorfen-sodium (AF-Na), an inhibitor of protoporphyrinogen oxidase, caused an accumulation of protoporphyrin IX (Proto IX) , light-induced necrotic spots on the cucumber cotyledon within 12-24 h, and photobleaching after 48-72 h of light exposure. Proto IX-sensitized and singlet oxygen ((1)O(2))-mediated oxidative stress caused by AF-Na treatment impaired photosystem I (PSI), photosystem II (PSII) and whole chain electron transport reactions. As compared to controls, the F(v)/F(m) (variable to maximal chlorophyll a fluorescence) ratio of treated samples was reduced. The PSII electron donor NH(2)OH failed to restore the F(v)/F(m) ratio suggesting that the reduction of F(v)/F(m) reflects the loss of reaction center functions. This explanation is further supported by the practically near-similar loss of PSI and PSII activities. As revealed from the light saturation curve (rate of oxygen evolution as a function of light intensity), the reduction of PSII activity was both due to the reduction in the quantum yield at limiting light intensities and impairment of light-saturated electron transport. In treated cotyledons both the Q (due to recombination of Q(A)(-) with S(2)) and B (due to recombination of Q(B)(-) with S(2)/S(3)) band of thermoluminescence decreased by 50% suggesting a loss of active PSII reaction centers. In both the control and treated samples, the thermoluminescence yield of B band exhibited a periodicity of 4 suggesting normal functioning of the S states in centers that were still active. The low temperature (77 K) fluorescence emission spectra revealed that the F(695) band (that originates in CP-47) increased probably due to reduced energy transfer from the CP47 to the reaction center. These demonstrated an overall damage to the PSI and PSII reaction centers by (1)O(2) produced in response to photosensitization reaction of protoporphyrin IX in AF-Na-treated cucumber seedlings.  相似文献   

7.
The fast (up to 1?s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.  相似文献   

8.
Many heavy metals inhibit electron transfer reactions in Photosystem II (PSII). Cd(2+) is known to exchange, with high affinity in a slow reaction, for the Ca(2+) cofactor in the Ca/Mn cluster that constitutes the oxygen-evolving center. This results in inhibition of photosynthetic oxygen evolution. There are also indications that Cd(2+) binds to other sites in PSII, potentially to proton channels in analogy to heavy metal binding in photosynthetic reaction centers from purple bacteria. In search for the effects of Cd(2+)-binding to those sites, we have studied how Cd(2+) affects electron transfer reactions in PSII after short incubation times and in sites, which interact with Cd(2+) with low affinity. Overall electron transfer and partial electron transfer were studied by a combination of EPR spectroscopy of individual redox components, flash-induced variable fluorescence and steady state oxygen evolution measurements. Several effects of Cd(2+) were observed: (i) the amplitude of the flash-induced variable fluorescence was lost indicating that electron transfer from Y(Z) to P(680)(+) was inhibited; (ii) Q(A)(-) to Q(B) electron transfer was slowed down; (iii) the S(2) state multiline EPR signal was not observable; (iv) steady state oxygen evolution was inhibited in both a high-affinity and a low-affinity site; (v) the spectral shape of the EPR signal from Q(A)(-)Fe(2+) was modified but its amplitude was not sensitive to the presence of Cd(2+). In addition, the presence of both Ca(2+) and DCMU abolished Cd(2+)-induced effects partially and in different sites. The number of sites for Cd(2+) binding and the possible nature of these sites are discussed.  相似文献   

9.
We studied the growth and photosynthetic characteristics of a toxic (CS506) and a nontoxic strain (CS509) of the bloom‐forming cyanobacterium Cylindrospermopsis raciborskii grown under identical experimental conditions. When exposed to light‐saturating growth conditions (100 μmol photons · m?2 · s?1), values for maximal photosynthetic capacity (Pmax) and maximum quantum yield (Fv/Fm) indicated that both strains had an equal ability to process captured photons and deliver them to PSII reaction centers. However, CS506 grew faster than CS509. This was consistent with its higher light requirement for saturation of photosynthesis (Ik). Greater shade tolerance of CS509 was indicated by its higher ability to harvest light (α), lower photosynthetic light compensation point (Ic), and higher chlorophyll a to biovolume ratio. Strain‐specific differences were found in relation to non‐photochemical quenching, effective absorption cross‐sectional area of PSIIα‐centers (σPSIIα), and the antenna connectivity parameter of PSIIα (JconPSIIα). These findings highlighted differences in the transfer of excitation from phycobilisome/PSII to PSI, on the dependence on different pigments for light harvesting and on the functioning of the PSII reaction centers between the two strains. The results of this study showed that both performance and composition of the photosynthetic apparatus are different between these strains, though with only two strains examined we cannot attribute the performance of strain 506 to its ability to produce cylindrospermopsins. The emphasis on a strain‐specific light adaptation/acclimation is crucial to our understanding of how different light conditions (both quantity and quality) can trigger the occurrence of different C. raciborskii strains and control their competition and/or dominance in natural ecosystems.  相似文献   

10.
Hwang HJ  Dilbeck P  Debus RJ  Burnap RL 《Biochemistry》2007,46(43):11987-11997
Basic amino acid side chains situated in active sites may mediate critical proton transfers during an enzymatic catalytic cycle. In the case of photosynthetic water oxidation, a strong base is postulated to facilitate the deprotonation of the active site Mn4-Ca cluster, thereby allowing the otherwise thermodynamically constrained transfer of an electron away from the Mn4-Ca cluster to the oxidized redox active tyrosine radical, YZ*, generated by photosynthetic charge separation. Arginine 357 of the CP43 polypeptide may be located in the second coordination shell of the O2-evolving Mn4-Ca cluster of photosystem II (PSII) according to current structural models. An ostensibly conservative substitution mutation, CP43-357K, was investigated using polarographic and fluorescence techniques in evaluating its potential impact on S-state cycling. Cells containing the CP43-357K mutation lost their capacity for autotrophic growth and exhibited a drastic reduction in O2 evolving activity ( approximately 15% of that of the wild type) despite the fact that mutant cells contained more than 80% of the concentration of charge-separating PSII reaction centers and more than half of these contained photooxidizable Mn. Fluorescence kinetics indicated that acceptor side electron transfer, dominated by the transfer of electrons from QA- to QB, was unaffected, but the fraction of centers containing Mn clusters capable of forming the S2 state was reduced to approximately 40% of that of the wild type. Analysis of O2 yields using a bare platinum electrode indicated a severe defect in the S-state cycling properties of the mutant H2O oxidation complexes. Although O2 evolution was delayed to the third flash during a train of single-turnover saturating flashes, the pattern of O2 emission did not exhibit a discernible periodicity indicating a very high miss factor, which was estimated to be approximately 45% compared to the wild-type value of approximately 10%. On the other hand, the multiflash fluorescence measurements indicate that the yield of formation of the S2 state from S1 is diminished by approximately 20%, although this latter estimate is complicated by the presence of damaged PSII centers. Taken together, the experiments indicate that the high miss factor observed during S-state cycling is likely due to a defect in the higher S-state transitions. These results are discussed in relation to the idea that CP43-R357 may serve as a ligand to bicarbonate or as the catalytic base proposed to mediate proton-coupled electron transfer (PCET) in the higher S states of the catalytic cycle of H2O oxidation.  相似文献   

11.
The effects of iron limitation on photosystem II (PSII) composition and photochemical energy conversion efficiency were studied in the unicellular chlorophyte alga Dunaliella tertiolecta. The quantum yield of photochemistry in PSII, inferred from changes in variable fluorescence normalized to the maximum fluorescence yield, was markedly lower in iron-limited cells and increased 3-fold within 20 h following the addition of iron. The decrease in the quantum yield of photochemistry was correlated with increased fluorescence emission from the antenna. In iron-limited cells, flash intensity saturation profiles of variable fluorescence closely followed a cumulative one-hit Poisson model, suggesting that PSII reaction centers are energetically isolated, whereas in iron-replete cells, the slope of the profile was steeper and the calculated probability of energy transfer between reaction centers increased to >0.6. Immunoassays revealed that in iron-limited cells the reaction center proteins, D1, CP43, and CP47, were markedly reduced relative to the peripheral light-harvesting Chl-protein complex of PSII, whereas the [alpha] subunit of cytochrome b559 was about 10-fold higher. Spectroscopic analysis established that the cytochrome b559 peptide did not contain an associated functional heme. We conclude that the photochemical conversion of absorbed excitation energy in iron-limited cells is limited by the number of photochemical traps per unit antenna.  相似文献   

12.
In photosynthetic organisms, light energy is absorbed by a complex network of chromophores embedded in light-harvesting antenna complexes. In photosystem II (PSII), the excitation energy from the antenna is transferred very efficiently to an active reaction center (RC) (i.e., with oxidized primary quinone acceptor Q A), where the photochemistry begins, leading to O2 evolution, and reduction of plastoquinones. A very small part of the excitation energy is dissipated as fluorescence and heat. Measurements on chlorophyll (Chl) fluorescence and oxygen have shown that a nonlinear (hyperbolic) relationship exists between the fluorescence yield (Φ F ) (or the oxygen emission yield, $ \Phi _{{{\text{O}}_{2} }} $ ) and the fraction of closed PSII RCs (i.e., with reduced Q A). This nonlinearity is assumed to be related to the transfer of the excitation energy from a closed PSII RC to an open (active) PSII RC, a process called PSII excitonic connectivity by Joliot and Joliot (CR Acad Sci Paris 258: 4622–4625, 1964). Different theoretical approaches of the PSII excitonic connectivity, and experimental methods used to measure it, are discussed in this review. In addition, we present alternative explanations of the observed sigmoidicity of the fluorescence induction and oxygen evolution curves.  相似文献   

13.
R. A. Chylla  G. Garab  J. Whitmarsh 《BBA》1987,894(3):562-571
We used two different techniques to measure the recovery time of Photosystem II following the transfer of a single electron from P-680 to QA in thylakoid membranes isolated from spinach. Electron transfer in Photosystem II reaction centers was probed first by spectroscopic measurements of the electrochromic shift at 518 nm due to charge separation within the reaction centers. Using two short actinic flashes separated by a variable time interval we determined the time required after the first flash for the electrochromic shift at 518 nm to recover to the full extent on the second flash. In the second technique the redox state of QA at variable times after a saturating flash was monitored by measurement of the fluorescence induction in the absence of an inhibitor and in the presence of ferricyanide. The objective was to determine the time required after the actinic flash for the fluorescence induction to recover to the value observed after a 60 s dark period. Measurements were done under conditions in which (1) the electron donor for Photosystem II was water and the acceptor was the endogenous plastoquinone pool, and (2) Q400, the Fe2+ near QA, remained reduced and therefore was not a participant in the flash-induced electron-transfer reactions. The electrochromic shift at 518 nm and the fluorescence induction revealed a prominent biphasic recovery time for Photosystem II reaction centers. The majority of the Photosystem II reaction centers recovered in less than 50 ms. However, approx. one-third of the Photosystem II reaction centers required a half-time of 2–3 s to recover. Our interpretation of these data is that Photosystem II reaction centers consist of at least two distinct populations. One population, typically 68% of the total amount of Photosystem II as determined by the electrochromic shift, has a steady-state turnover rate for the electron-transfer reaction from water to the plastoquinone pool of approx. 250 e / s, sufficiently rapid to account for measured rates of steady-state electron transport. The other population, typically 32%, has a turnover rate of approx. 0.2 e / s. Since this turnover rate is over 1000-times slower than normally active Photosystem II complexes, we conclude that the slowly turning over Photosystem II complexes are inconsequential in contributing to energy transduction. The slowly turning over Photosystem II complexes are able to transfer an electron from P-680 to QA rapidly, but the reoxidation of QA is slow (t1/2 = 2 s). The fluorescence induction measurements lead us to conclude that there is significant overlap between the slowly turning over fraction of Photosystem II complexes and PS IIβ reaction centers. One corollary of this conclusion is that electron transfer from P-680 to QA in PS IIβ reaction centers results in charge separation across the membrane and gives rise to an electrochromic shift.  相似文献   

14.
We have measured light-induced voltage changes (electrogenic events) in photosystem II (PSII) core complexes oriented in phospholipid monolayers. These events are compared to those measured in the functionally and structurally closely related reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides. In both systems we observed a rapid (< 100 ns) light-induced increase in voltage associated with charge separation. In PSII reaction centers it was followed by a decrease (decay) of approximately 14% of the charge-separation voltage and a time constant of approximately 500 microseconds. In bacterial reaction centers this decay was approximately 9% of the charge-separation voltage, and the time constant was approximately 200 microseconds. The decay was presumably associated with a structural change. In bacterial reaction centers, in the presence of excess water-soluble cytochrome c2+, it was followed by a slower increase of approximately 30% of the charge-separation voltage, associated with electron transfer from the cytochrome to the oxidized donor, P+. In PSII reaction centers, after the decay the voltage remained on the same level for > or = 0.5 s. In PSII reaction centers the electron transfer Q-AQB-->QA Q-B contributed with an electrogenicity of < or = 5% of that of the charge separation. In bacterial reaction centers this electrogenicity was < or = 2% of the charge-separation electrogenicity. Proton transfer to Q2-B in PSII reaction centers contributed with approximately 5% of the charge-separation voltage, which is approximately a factor of three smaller than that observed in bacterial reaction centers.  相似文献   

15.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

16.
The flash-induced thermoluminescence (TL) technique was used to investigate the action of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) on charge recombination in photosystem II (PSII). Addition of low concentrations (muM range) of TMPD to thylakoid samples strongly decreased the yield of TL emanating from S(2)Q(B)(-) and S(3)Q(B)(-) (B-band), S(2)Q(A)(-) (Q-band), and Y(D)(+)Q(A)(-) (C-band) charge pairs. Further, the temperature-dependent decline in the amplitude of chlorophyll fluorescence after a flash of white light was strongly retarded by TMPD when measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Though the period-four oscillation of the B-band emission was conserved in samples treated with TMPD, the flash-dependent yields (Y(n)) were strongly declined. This coincided with an upshift in the maximum yield of the B-band in the period-four oscillation to the next flash. The above characteristics were similar to the action of the ADRY agent, carbonylcyanide m-chlorophenylhydrazone (CCCP). Simulation of the B-band oscillation pattern using the integrated Joliot-Kok model of the S-state transitions and binary oscillations of Q(B) confirmed that TMPD decreased the initial population of PSII centers with an oxidized plastoquinone molecule in the Q(B) niche. It was deduced that the action of TMPD was similar to CCCP, TMPD being able to compete with plastoquinone for binding at the Q(B)-site and to reduce the higher S-states of the Mn cluster.  相似文献   

17.
Leaf discs of Capsicum annuum L. were illuminated in air enriched with 1% CO2 in the absence or presence of lincomycin, an inhibitor of chloroplast-encoded protein synthesis. The loss of functional photosystem (PS) II complexes with increase in cumulative light dose (photon exposure), assessed by the O2 yield per single-turnover flash, was greater in leaves of plants grown in low light than those in high light; it was also exacerbated in the presence of lincomycin. A single exponential decay can describe the relationship between the loss of functional PSII and increase in cumulative photon exposure. From this relationship we obtained both the maximum quantum yield of photoinactivation of PSII at limiting photon exposures and the coefficient k, interpreted as the probability of photoinactivation of PSII per unit photon exposure. Parallel measurements of chlorophyll fluorescence after light treatment showed that 1/Fo−1/Fm was linearly correlated with the functionality of PSII, where Fo and Fm are the chlorophyll fluorescence yields corresponding to open and closed PSII reaction centers, respectively. Using 1/Fo−1/Fm as a convenient indicator of PSII functionality, it was found that PSII is present in excess; only after the loss of about 40% functional PSII complexes did PSII begin to limit photosynthetic capacity in capsicum leaves.  相似文献   

18.
以水稻品种‘II优084’为材料,测定了强光胁迫下,水稻光合速率、叶绿素荧光快速诱导曲线(OJIP)以及O2ˉ·和H2O2在水稻叶片中积累的影响。结果表明强光胁迫下,水稻的净光合速率及气孔导度下降;光系统II(PSII)反应中心关闭的比例以及电子传递链中光系统II受体侧原初醌受体(QA)的还原程度增加;PSII反应中心电子传递的量子产额、能量以及传递到下游电子链的比率下降;光抑制下PSII的过剩能量向PSI的状态装换减少;自由基的产生增加。而施加作为硫化氢(H2S)供体的外源硫氢化钠(NaHS)后,上述影响PSII活性的指标的负变化被缓解,捕光天线复合体LHC通过在两个光系统之间的移动,来调节两个光系统的能量分配。强光下H2S处理能促进LHC离开PSII,与PSI结合,从而减少PSII分配的激发能,增加PSI分配的激发能,缓解了PSII的过度还原。以上结果表明外源H2S通过促进PSII的光合活性来缓解水稻光抑制伤害。  相似文献   

19.
The "saturating pulse" method of in vivo Chl fluorescence measurement has been widely used by physiologists and especially ecophysiologists, as it allows a simple, rapid and non-invasive assessment of PSII function and the allocation of absorbed energy into photochemical and non-photochemical processes. It is based on the accurate determination of the so-called Fm('), i.e. the fluorescence signal emitted when a "saturating" light pulse closes all PSII centers. In this methodological investigation, we examined whether the saturating pulse intensities required to obtain maximal fluorescence yields differ between leaves of various species receiving varying actinic light irradiances. It was shown that, in leaves adapted to comparatively high (yet realistic) levels of natural irradiances, the saturating pulses usually applied are not able to close all PSII reaction centers. As a result, there is a high risk of considerable Fm(') underestimation. Accordingly, the derived values of effective PSII yields and linear electron transport rates (ETR) are also underestimated, even at the highest saturation pulse levels afforded by commercial instruments. Since the extent of underestimation increases with actinic irradiance, the ETR versus light curves are considerably distorted. The possible reasons for the apparent inability of "saturating" pulses to close all PSII centers at high actinic light and the practical implications, especially in field work, are discussed.  相似文献   

20.
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号