首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant genotypes that limit nodulation by indigenous rhizobia while nodulating normally with inoculant-strain nodule occupancy in Phaseolus vulgaris. In this study, eight of nine Rhizobium tropici strains and six of 15 Rhizobium etli strains examined, showed limited ability to nodulate and fix nitrogen with the two wild P. vulgaris genotypes G21117 and G10002, but were effective in symbiosis with the cultivated bean genotypes Jamapa and Amarillo Gigante. Five of the R. etli strains restricted in nodulation by G21117 and G10002 produced an alkaline reaction in yeast mannitol medium. In a competition experiment in which restricted strains were tested in 1:1 mixtures with the highly effective R. etli strain CIAT632, the restricted strains produced a low percentage of the nodules formed on G2117, but produced over 40% of the nodules formed on Jamapa. The interaction of the four Rhizobium strains with the two bean genotypes, based on the percentage of nodules formed, was highly significant (P<0.001).  相似文献   

2.
We have analyzed 30 rhizobial isolates obtained from common bean (Phaseolus vulgaris L.) root nodules grown in the Middle Blacksea Region of Turkey, using ARDRA and nucleotide sequence data. ARDRA analysis with enzymes CfoI, HinfI, NdeII, MspI and PstI revealed three patterns. Based on sequence data from 16S rDNA, the patterns were identified as, Rhizobium leguminosarum bv. phaseoli (n = 16), R. etli bv. phaseoli (n = 8) and R. phaseoli (n = 6). On the other hand, nucleotide sequence phylogenies of housekeeping genes (recA, atpD and glnII) selected to confirm the 16S rDNA phylogeny revealed different evolutionary relationships. These results suggested the possibility of lateral transfers of these genes amongst different rhizobial species (including R. leguminosarum, R. etli and R. phaseoli) sharing the same ecological niche (nodulating P. vulgaris) which also indicates that there may be no true genetic barier among these species. Phylogenetic analysis based on DNA sequence data from the nodA and nifH genes showed that all rhizobial species obtained in this study were carrying nodA and nifH haplotypes which were the same or similar to those of CFN42 (R. etli type strain), suggesting a further support for the lateral transfer of CFN42 Sym plasmid, p42, amongst Turkish common bean nodulating rhizobial isolates.  相似文献   

3.
Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes. Therefore, the species R. phaseoli is more abundant in America than previously thought, and since the proposal of the American origin of R. etli was based on the analysis of several strains that are currently known to be R. phaseoli, it can be concluded that both species have an American origin coevolving with their host in its distribution centres. The analysis of the symbiovar phaseoli nodC gene alleles carried by different species isolated in American and European countries suggested a Mesoamerican origin of the α allele and an Andean origin of the γ allele, which is supported by the dominance of this latter allele in Europe where mostly Andean cultivars of common beans have been traditionally cultivated.  相似文献   

4.
A collection of 160 isolates of rhizobia nodulating Phaseolus vulgaris in three geographical regions in Tunisia was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-amplified 16S rDNA, nifH and nodC genes. Nine groups of rhizobia were delineated: Rhizobium gallicum biovar (bv.) gallicum, Rhizobium leguminosarum bv. phaseoli and bv. viciae, Rhizobium etli bv. phaseoli, Rhizobium giardinii bv. giardinii, and four groups related to species of the genus Sinorhizobium, Sinorhizobium meliloti, Sinorhizobium medicae and Sinorhizobium fredii. The most abundant rhizobial species were R. gallicum, R. etli, and R. leguminosarum encompassing 29–20% of the isolates each. Among the isolates assigned to R. leguminosarum, two-thirds were ineffective in nitrogen fixation with P. vulgaris and harbored a symbiotic gene typical of the biovar viciae. The S. fredii-like isolates did not nodulate soybean plants but formed numerous effective nodules on P. vulgaris. Comparison of nodC gene sequences showed that their symbiotic genotype was not related to that of S. fredii, but to that of the S. fredii-like reference strain GR-06, which was isolated from a bean plant grown in a Spanish soil. An additional genotype including 16% of isolates was found to be closely related to species of the genus Agrobacterium. However, when re-examined, these isolates did not nodulate their original host.  相似文献   

5.
Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France   总被引:1,自引:0,他引:1  
Two hundred and eighty seven isolates of Rhizobium nodulating Phaseolus vulgaris L. were sampled in France from four geographically distant field populations. They were characterized by their colony morphology and by plasmid profiles. A representative sample was further characterized: a) by the ability of each isolate to nodulate a potential alternative host Leucaena leucocephala and to grow on specific media, and b) by RFLP analysis of PCR amplified 16S rRNA genes. On the basis of their phenotypic and genetic characteristics the isolates could be assigned either to Rhizobium leguminosarum bv phaseoli, or to R. tropici. The two species co-occurred at three sites. R. leguminosarum bv phaseoli represented 2%, 4%, 72% and 100% of the population at the four different sites. Eighteen and 22 different plasmid profiles were identified within R. tropici and R. leguminosarum bv phaseoli, respectively. Some of them were conserved between distant geographical regions. The fact that R. tropici was found in France shows that this species is not limited to tropical regions and gives additional evidence of the multi-specific nature of the Phaseolus microsymbiont, even over a geographically limited area.  相似文献   

6.
Rhizobium tropici, R. leguminosarum bv phaseoli and R. loti each have an active C4-dicarboxylic acid transport system dependent on an energized membrane. Free thiol groups are probably involved at the active site. Since EDTA inhibited succinate transport in R. leguminosarum bv phaseoli and R. loti, divalent cations may participate in the process; the activity was reconstituted by the addition of Ca2+ or Mg2+. However, EDTA had no effect on succinate transport in R. tropici, R. meliloti or R. trifolii strains. Ca2+ or Mg2+ had a similar effect on the growth rates of R. tropici and R. leguminosarum bv phaseoli; R. tropici did not require Ca2+ to grow on minimal medium supplemented with succinate but R. leguminosarum bv phaseoli required either or both of the divalent cations Ca2+ and Mg2+. A R. tropici Mu-dI (lacZ) mutant defective in dicarboxylic acid transport, was isolated and found unable to form effective bean nodules.The authors are with the Division of Biochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Avda, Italia 3318, 11.600 Montevideo, Uruguay  相似文献   

7.
Competition from native soil rhizobia is likely to be an important factor limiting Phaseolus vulgaris L. inoculant response in Latin America. We used UMR 1116, a nod + fix natural mutant of Rhizobium leguminosarum bv phaseoli strain CC511, as a reference strain to study competition for nodulation sites in this species. When P. vulgaris cv Carioca was planted in soils containing different proportions of UMR 1116 and the effective and competitive strain UMR 1899, UMR 1116 occupied more than 50% of the nodules at all inoculant ratios tested, though increasing the proportion of UMR 1899 in the inoculant did enhance the number and percentage of effective nodules and plant dry weight. Sixty two strains of bean rhizobia were tested in competition with UMR 1116. An inoculant ratio of 1:1 was used, with all strains applied to the soil rather than to seeds. Strains varied in the number and percentage of effective nodules produced in competition with UMR 1116, and in plant dry weight, and there was a strong correlation between variation in each of these traits and plant N accumulation. Seven of the strains (UMR 1073, 1084, 1102, 1125, 1165, 1378 and 1384) were identified as both superior in competitive ability and active in N2 fixation. Site of placement of the inoculant and ambient temperature influenced strain response.Journal paper 16736, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA  相似文献   

8.
Rhizobium etli strain TAL182 and R. leguminosarum bv phaseoli strain 8002, both of which produce melanin pigment, were tested for their nodulation competitiveness on beans by paired inoculation with two strains which do not produce melanin: R. tropici strain CIAT899 and Rhizobium sp. strain TAL1145. An assay was developed to distinguish nodules formed by the melanin-producing and non-producing strains. Strain TAL182 had discrete competitive superiority over CIAT899 and TAL1145 for nodulation of beans. Nodulation competitiveness was not correlated with the ability to produce melanin pigment or the host range of the Rhizobium strains tested.The authors are with the Department of Plant Molecular Physiology, University of Hawaii, 3050 Maile Way, Gillmore 402, Honolulu, HI 96822, USA  相似文献   

9.
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.  相似文献   

10.
Seven bean rhizobial strains EBRI 2, 3, 21, 24, 26, 27 and 29 identified as Rhizobium etli, and EBRI 32 identified as Rhizobium gallicum, isolated from Egyptian soils and which nodulated Phaseolus vulgaris efficiently, were subjected to hybridization with a nifH probe in order to estimate the copy number of this gene. Seven strains (EBRI 2, 3, 21, 24, 26, 27 and 29) which were only able to nodulate Phaseolus vulgaris, contained three copies of the nifH gene, consistent with their identification as Rhizobium etli bv. phaseoli. Only one strain (EBRI 32) which nodulated both Phaseolus vulgaris and Leucaena leucocephala, had one copy of nifH gene. This confirmed the classification of this strain as Rhizobium gallicum bv. gallicum.  相似文献   

11.
Seven Tn5 induced mutants unable to use glutamate as sole carbon and nitrogen source were isolated from the effective Rhizobium leguminosarum bv. phaseoli strain P121-R. As indicated by restriction and hybridisation analysis, all the mutants arose from a single Tn5 insertion in the chromosome. The 14C-glutamate uptake rate of the mutants was 76 to 88% lower than that of strain P121-R. Inoculation of Phaseolus vulgaris cv. Labrador with these mutants significantly decreased shoot dry matter yield and the total nitrogen content respectively, as compared to inoculation with the parental strain P121-R. All the mutants formed nodules, however they were smaller, white to greenish and approximately 30% less numerous than those formed by strain P121-R. These observations suggest that glutamate transport and catabolism in R. leguminosarum bv. phaseoli P121-R may play an important role in the establishment of an effective symbiosis in field bean. None of the mutants isolated was an auxotroph. All mutants were unable to grow on aspartate suggesting that glutamate and aspartate, probably have the same transporter as indicated in Rhizobium meliloti and in Bacillus subtilis. All mutants readily used glutamine, proline, arginine as sole carbon and nitrogen source, but grew more slowly than the wild type strain. On the other hand, all the mutants were impaired in growth on histidine and -aminobutyrate as sole carbon and nitrogen source. As the catabolism of these amino acids occurs predominantly through glutamate, our results indicate that mutants are also impaired in their ability to use histidine and -aminobutyrate as a nitrogen source. Our results also suggest that other amino acids catabolized through the glutamate pathways may be an additional important carbon source for bacteroids in nodules.  相似文献   

12.
Two cultivars of Phaseolus vulgaris L., one responsive (Mexico 309) and one less-responsive (Rio Tibagi) to nodulation with Rhizobium were grown in Leonard jars in a greenhouse. Bean plants were either inoculated with a strain of Rhizobium leguminosarum bv. phaseoli (UMR-1899), a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus etunicatum) or were left non-inoculated (controls). At two harvests (21 and 28 days post-emergence), extracts containing soluble proteins and free amino acids were prepared from leaves, roots and nodules of field beans. Nodulated plants contained a significantly higher concentration of protein and amino acids in all plant parts. Nitrogen-fixing beans invested a significantly greater proportion of total N as protein-N and amino acid-N as compared to VAM or control beans. Abundant nodule-specific proteins (nodulins) were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), identified and quantified using scanning densitometry. Rio Tibagi nodules contained a significantly lower concentration of glutamine synthetase (GS) subunits than did Mexico 309 nodules. Glutamate synthase (GOGAT) and GS activities were low relative to other legumes. The transferase/synthetase ratio for GS was also low indicating that the synthetase activity was caturated and was operating at maximal level in these young N2-fixing associations. Specific nodule activity (SNA) and the level of GS were correlated (r=0.90, p<0.05) for both cultivars at both harvests. GS activity was only 8 or 24% higher than SNA in nodules of Mexico 309 or Rio Tibagi cultivars, respectively, under conditions where substrate was not limiting. This suggests that early in the functioning of this symbiosis N assimilation by GS is the rate-limiting step in N2 fixation by these two bean cultivars, each with a different symbiotic efficiency. Phaseolus breeding programs that attempt to improve N2 fixation in beans should identify germplasm that expresses elevated levels of nodule-specific GS or GOGAT, and this material should be used along with effective R. leguminosarum bv. phaseoli strains that have already been selected, to determine superior host-microsymciont associations.  相似文献   

13.
Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR–RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti. The diversity of the symbiotic genes was then assessed by PCR–RFLP of nodC and nifH genes. The majority of the symbiotic genotypes were conserved between oases and other soils of the north of the country. Sinorhizobia isolated from bean were then compared with isolates from Medicago truncatula plants grown in the oases soils. All the nodC types except for nodC type p that was specific to common bean isolates were shared by both hosts. The four isolates with nodC type p induced N2-fixing effective nodules on common bean but did not nodulate M. truncatula and Medicago sativa. The phylogenetic analysis of nifH and nodC genes showed that these isolates carry symbiotic genes different from those previously characterized among Medicago and bean symbionts, but closely related to those of S. fredii Spanish and Tunisian isolates effective in symbiosis with common bean but unable to nodulate soybean. The creation of a novel biovar shared by S. meliloti and S. fredii, bv. mediterranense, was proposed.  相似文献   

14.
Low-molecular-weight (LMW) RNA molecules were analyzed to characterize rhizobial isolates that nodulate the common bean growing in Spain. Since LMW RNA profiles, determined by staircase electrophoresis, varied across the rhizobial species nodulating beans, we demonstrated that bean isolates recovered from Spanish soils presumptively could be characterized as Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum bv. viciae and bv. trifolii, and Sinorhizobium fredii.  相似文献   

15.
A collection of rhizobial isolates from nodules of wild beans, Phaseolus vulgaris var. aborigineus, found growing in virgin lands in 17 geographically separate sites in northwest Argentina was characterized on the basis of host range, growth, hybridization to a nifH probe, analysis of genes coding for 16S rRNA (16S rDNA), DNA fingerprinting, and plasmid profiles. Nodules in field-collected wild bean plants were largely dominated by rhizobia carrying the 16S rDNA allele of Rhizobium etli. A similar prevalence of the R. etli allele was observed among rhizobia trapped from nearby soil. Intragroup diversity of wild bean isolates with either R. etli-like or Rhizobium leguminosarum bv. phaseoli-like alleles was generally found across northwest Argentina. The predominance of the R. etli allele suggests that in this center of origin of P. vulgaris the coevolution of Rhizobium spp. and primitive beans has resulted in this preferential symbiotic association.  相似文献   

16.
The fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512 were identified by DNA hybridization of a genomic library with an internal fragment of the Rhizobium meliloti fixJ gene. The nucleotide sequence was determined and the corresponding amino acid sequence was aligned with the amino acid sequences of the FixL proteins of R. meliloti, Bradyrhizobium japonicum and Azorhizobium caulinodans. While the FixJ protein and the carboxy-terminal part of the FixL protein are highly homologous to the other FixL and FixJ proteins, the homology in the central heme-binding, oxygen-sensing domain and in the amino-terminal domain of FixL is very low. The R. leguminosarum bv. phaseoli FixL protein does not contain the heme-binding motif defined for the previously described FixL proteins. R. leguminosarum bv. phaseoli fixLJ and fixJ mutants were constructed. These mutants can still fix nitrogen, albeit at a reduced level. Expression analysis of nifA-gusA and nifH-gusA fusions in the constructed mutants revealed that the R. leguminosarum bv. phaseoli fixLJ genes are involved in microaerobic nifH expression but not in nifA expression.The nucleotide sequence data reported will appear in the EMBL, Genbank and DDBJ Nucleotide Sequence Databases under the accession number U27314  相似文献   

17.
<p>The diversity and taxonomic relationships of 83 bean-nodulating rhizobia indigenous to Ethiopian soils were characterized by PCR-RFLP of the internally transcribed spacer (ITS) region between the 16S and 23S rRNA genes, 16S rRNA gene sequence analysis, multilocus enzyme electrophoresis (MLEE), and amplified fragment-length polymorphism. The isolates fell into 13 distinct genotypes according to PCR-RFLP analysis of the ITS region. Based on MLEE, the majority of these genotypes (70%) was genetically related to the type strain of Rhizobium leguminosarum. However, from analysis of their 16S rRNA genes, the majority was placed with Rhizobium etli. Transfer and recombination of the 16S rRNA gene from presumptively introduced R. etli to local R. leguminosarum is a possible theory to explain these contrasting results. However, it seems unlikely that bean rhizobia originating from the Americas (or Europe) extensively colonized soils of Ethiopia because Rhizobium tropici, Rhizobium gallicum, and Rhizobium giardinii were not detected and only a single ineffective isolate of R. etli that originated from a remote location was identified. Therefore, Ethiopian R. leguminosarum may have acquired the determinants for nodulation of bean from a low number of introduced bean-nodulating rhizobia that either are poor competitors for nodulation of bean or that failed to survive in the Ethiopian environment. Furthermore, it may be concluded from the genetic data presented here that the evidence for separating R. leguminosarum and R. etli into two separate species is inconclusive.  相似文献   

18.
Lithgow  J.K.  Danino  V. E.  Jones  J.  Downie  J.A. 《Plant and Soil》2001,232(1-2):3-12
Strains of Rhizobium leguminosarum use a cell density-dependent gene regulatory system to assess their population density. This is achieved by the accumulation of N-acyl-homoserine lactones (AHLs) in the environment during growth of the bacteria and these AHLs stimulate the induction of various bacterial genes that are up-regulated in the late-exponential and stationary phases of growth. A genetically well-characterised strain of R. leguminosarum biovar viciae was found to have four genes, whose products synthesise different AHLs. We have analysed AHL production by four genetically distinct isolates of R. leguminosarum, three of bv. viciae and one of bv. phaseoli. Distinct differences were seen in the pattern of AHLs produced by the bv. viciae strains compared with bv. phaseoli and the increased levels and diversity of AHLs found in bv. viciae strains can be attributed to the rhiI gene, which is located on the symbiotic (Sym) plasmid and is up-regulated when the bacteria are grown in the rhizosphere. Additional complexity to the profile of AHLs is found to be associated with highly transmissible plasmid pRL1JI of R. leguminosarum bv. viciae, but this is not observed with some other strains, including those carrying different transmissible plasmids. In addition to AHLs produced by the products of genes on the symbiotic plasmid, there is clear evidence for the presence of other AHL production loci. Expression levels and patterns of AHLs can change markedly in different growth media. These results indicate that there is a network of quorum-sensing loci in different strains of R. leguminosarum and these loci may play a role in adapting to rhizosphere growth and plasmid transfer.  相似文献   

19.
Snap bean fields in 12 of the 25 governorates of Egypt were surveyed to determine the distribution and taxonomy of snap bean-nodulating rhizobia. Nodulation rates in the field were very low, indicating that Egyptian soils do not have sufficient numbers of snap bean-compatible Rhizobium spp. A total of 87 rhizobial isolates were assayed on the most commonly grown cultivars in order to identify the most effective strains. The five most effective isolates (R11, R13, R28, R49 and R52) were fast-growing and utilized a wide range of carbon and nitrogen sources. A phylogenetic assignment of these strains by analysis of the 16S ribosomal RNA gene suggested that all fell within the Rhizobium etliRhizobium leguminosarum group. Strains R11, R49 and R52 all clustered with other identified R. etli strains, while strains R13 and R28 were more distinct. The distinctness of R13 and R28 was supported by physiological characteristics, such as their ability to utilize citrate, erythritol, dulcitol and lactate. Strains R13 and R28 also yielded the highest plant nitrogen content of all isolates.The highly effective strains isolated in this study, in particular strains R13 and R28, are promising candidates for improving crop yields. The data also suggested that these two strains represented a novel sub-group within the R. etli–R. leguminosarum group. As snap bean is a crop of great economic value to Egypt, the identification of highly effective rhizobial strains adapted to Egyptian soils, such as strains R13 and R28, is of great interest.  相似文献   

20.
Common bean,Phaseolus vulgaris L., is known to be ‘inefficient’ in nodulation and N2 fixation although it responds to applied nitrogen. An experiment was conducted to identify and to characterize bean cultivars nodulating in the presence of a high level of nitrogen. Sixteen cultivars and a check for inefficient nodulation, OAC Seaforth, were inoculated and grown for 40 days in replicated pots supplied with zero, 3.5 and 10.5 mM combined nitrogen as NO 3 and NH 4 + . Seven traits relating to nodulation and N2 fixation were all significantly affected by N level (N), cultivar (Cv) and N × Cv interactions (except for root dry weight), indicating that cultivars responded differently to the N treatments. Total dry weight (W) and shoot to root ratio (S/R) increased with the increased N levels. Nodule dry weight (Wn), visual nodulation score (Nv) and nodulation index (Nx) decreased as the N increased. Percent N and N content per plant increased with the increased N level. Plant weight (W) was positively correlated with Wn, Nv and N content and negatively correlated with %N. Nodulation score was positively associated with Wn and plant N content. Genotypes superior in nodulation and N2 fixation in the presence of N were identified. Cultivars Italian Barlotti, California Light Red Kidney, Kentucky Wonder A and Pueblo 152 were selected for further testing and use in improving the nitrate tolerant nodulating characteristic of bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号