首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have established an in vitro snRNP nuclear import system using digitonin permeabilized somatic cells supplemented with cytosolic extracts. As model karyophiles we used digoxygenin labelled U1 snRNPs or fluorescein labelled U2 snRNPs. In vitro nuclear import of snRNPs is inhibited by anti-pore component antibodies, consistent with transport occurring through nuclear pores. This import requires ATP, cytosolic factors and a nuclear localization signal (NLS). SnRNP nuclear accumulation is saturable and distinct from protein transport. Nuclear import of snRNPs, in permeabilized NRK cells supplemented with somatic cell cytosol, requires the same NLS structures as those identified in micro-injected mammalian cells. In contrast to the situation in Xenopus oocytes, the m3G-cap is not required for in vitro nuclear import of U1 and U2 snRNPs in somatic cells. Instead, assembly of the Sm-core domain is both necessary and sufficient to mediate snRNP nuclear targeting. Interestingly, when the in vitro system was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was m3G-cap dependent. These results indicate that soluble cytosolic factors mediate the differential m3G-cap dependence of U1 and U2 snRNP nuclear import in somatic cells and oocytes. We also demonstrate the existence of a soluble cytosolic factor whose interaction with the U2 snRNP m3G-cap is both saturable and essential for U2 snRNP nuclear import in Xenopus oocytes.  相似文献   

2.
3.
We have investigated the nuclear transport of U1 and U5 snRNPs by microinjection studies in oocytes from Xenopus laevis using snRNP particles prepared by reconstitution in vitro. Competition studies with snRNPs showed that the Sm core domain of U1 snRNPs contains a nuclear location signal that acts independently of the m3G cap. The transport of U1 snRNP can be blocked by saturation with competitor U1 snRNPs or by U5 snRNPs, which indicates that the signals on the respective Sm core domains interact with the same transport receptors. Further, by using a minimal U1 snRNP particle reconstituted in vitro and containing only the Sm core RNP domain and lacking stem-loops I to III of U1 RNA, we show that this is targeted actively to the nucleus, in spite of the absence of the m3G cap. This indicates that under certain conditions the NLS in the Sm core domain not only is an essential, but may also be a sufficient condition for nuclear targeting. We propose that the RNA structure of a given snRNP particle determines at least in part whether the particle's m3G cap is required for nuclear transport or can be dispensed with.  相似文献   

4.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

5.
In animals, replication-dependent histone genes are expressed in dividing somatic cells during S phase to maintain chromatin condensation. Histone mRNA 3'-end formation is an essential regulatory step producing an mRNA with a hairpin structure at the 3'-end. This requires the interaction of the U7 small nuclear ribonucleoprotein particle (snRNP) with a purine-rich spacer element and of the hairpin-binding protein with the hairpin element, respectively, in the 3'-untranslated region of histone RNA. Here, we demonstrate that bona fide histone RNA 3' processing takes place in Xenopus egg extracts in a reaction dependent on the addition of synthetic U7 RNA that is assembled into a ribonucleoprotein particle by protein components available in the extract. In addition to reconstituted U7 snRNP, Xenopus hairpin-binding protein SLBP1 is necessary for efficient processing. Histone RNA 3' processing is not affected by addition of non-destructible cyclin B, which drives the egg extract into M phase, but SLBP1 is phosphorylated in this extract. SPH-1, the Xenopus homologue of human p80-coilin found in coiled bodies, is associated with U7 snRNPs. However, this does not depend on the U7 RNA being able to process histone RNA and also occurs with U1 snRNPs; therefore, association of SPH1 cannot be considered as a hallmark of a functional U7 snRNP.  相似文献   

6.
The nuclear localization signal (NLS) of spliceosomal U snRNPs is composed of the U snRNA's 2,2,7-trimethyl-guanosine (m3G)-cap and the Sm core domain. The m3G-cap is specifically bound by snurportin1, which contains an NH2-terminal importin-beta binding (IBB) domain and a COOH-terminal m3G-cap--binding region that bears no structural similarity to known import adaptors like importin-alpha (impalpha). Here, we show that recombinant snurportin1 and importin-beta (impbeta) are not only necessary, but also sufficient for U1 snRNP transport to the nuclei of digitonin-permeabilized HeLa cells. In contrast to impalpha-dependent import, single rounds of U1 snRNP import, mediated by the nuclear import receptor complex snurportin1-impbeta, did not require Ran and energy. The same Ran- and energy-independent import was even observed for U5 snRNP, which has a molecular weight of more than one million. Interestingly, in the presence of impbeta and a snurportin1 mutant containing an impalpha IBB domain (IBBimpalpha), nuclear U1 snRNP import was Ran dependent. Furthermore, beta-galactosidase (betaGal) containing a snurportin1 IBB domain, but not IBBimpalpha-betaGal, was imported into the nucleus in a Ran-independent manner. Our results suggest that the nature of the IBB domain modulates the strength and/or site of interaction of impbeta with nucleoporins of the nuclear pore complex, and thus whether or not Ran is required to dissociate these interactions.  相似文献   

7.
Protein import to the nucleus is a signal-mediated process that exhibits saturation kinetics. We investigated whether signal bearing proteins compete with U2 and U6 snRNPs during import. When injected into Xenopus oocytes, saturating concentrations of P(Lys)-BSA, a protein bearing multiple nuclear localization signals from SV40 large T-antigen, reduce the rate of [125I]P(Lys)-BSA and of [125I]nucleoplasmin import, consistent with their competing for and sharing the same limiting component of the import apparatus. In contrast, saturating concentrations of P(Lys)-BSA do not reduce the rate of HeLa [32P]U2 snRNP assembly or import. The import of U6 snRNP is also competed by P(Lys)-BSA. We conclude that U2 snRNP is imported into oocyte nuclei by a kinetic pathway that is distinct from the one followed by P(Lys)-BSA, nucleoplasmin, and U6 snRNP.  相似文献   

8.
Nuclear import of U snRNPs requires importin beta.   总被引:2,自引:1,他引:1  
I Palacios  M Hetzer  S A Adam    I W Mattaj 《The EMBO journal》1997,16(22):6783-6792
Macromolecules that are imported into the nucleus can be divided into classes according to their nuclear import signals. The best characterized class consists of proteins which carry a basic nuclear localization signal (NLS), whose transport requires the importin alpha/beta heterodimer. U snRNP import depends on both the trimethylguanosine cap of the snRNA and a signal formed when the Sm core proteins bind the RNA. Here, factor requirements for U snRNP nuclear import are studied using an in vitro system. Depletion of importin alpha, the importin subunit that binds the NLS, is found to stimulate rather than inhibit U snRNP import. This stimulation is shown to be due to a common requirement for importin beta in both U snRNP and NLS protein import. Saturation of importin beta-mediated transport with the importin beta-binding domain of importin alpha blocks U snRNP import both in vitro and in vivo. Immunodepletion of importin beta inhibits both NLS-mediated and U snRNP import. While the former requires re-addition of both importin alpha and importin beta, re-addition of importin beta alone to immunodepleted extracts was sufficient to restore efficient U snRNP import. Thus importin beta is required for U snRNP import, and it functions in this process without the NLS-specific importin alpha.  相似文献   

9.
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.  相似文献   

10.
Monospecific antibodies directed against several U small nuclear ribonucleoprotein (U snRNP) particle proteins were affinity purified from a patient's anti-(U1,U2)RNP serum. These were used to demonstrate that: (i) proteins equivalent to the mammalian U2 snRNP-specific A' and B" proteins are present in Xenopus laevis oocytes; (ii) both proteins A' and B" have the same structural requirements for binding to U2 snRNA; (iii) proteins B, B' and D have the same structural requirement for binding to U2 snRNA; (iv) using very high specific activity RNA probes it is possible to detect a fraction of either U1 or U2 snRNA precipitable by antibodies directed against proteins specific for the other U snRNP, indicating an interaction between U1 and U2 snRNPs. The structural requirements of this interaction were studied for the U2 snRNP. All changes made to U2 snRNA or snRNP structure resulted in loss of the interaction with U1 snRNP.  相似文献   

11.
We have analyzed the assembly of the spliceosomal U4/U6 snRNP by injecting synthetic wild-type and mutant U4 RNAs into the cytoplasm of Xenopus oocytes and determining the cytoplasmic-nuclear distribution of U4 and U4/U6 snRNPs by CsCl density gradient centrifugation. Whereas the U4 snRNP was localized in both the cytoplasmic and nuclear fractions, the U4/U6 snRNP was detected exclusively in the nuclear fraction. Cytoplasmic-nuclear migration of the U4 snRNP did not depend on the stem II nor on the 5' stem-loop region of U4 RNA. Our data provide strong evidence that, following the cytoplasmic assembly of the U4 snRNP, the interaction of the U4 snRNP with U6 RNA/RNP occurs in the nucleus; furthermore, cytoplasmic-nuclear transport of the U4 snRNP is independent of U4/U6 snRNP assembly.  相似文献   

12.
Antibodies specific for 2,2,7-trimethylguanosine (m3G), which do not cross-react with m7G-capped RNA molecules were used to study, by immunofluorescence microscopy, the reactivity of the m3G-containing cap structures of the snRNAs U1 to U5 in situ. In interphase cells, immunofluorescent sites were restricted to the nucleus, whilst nucleoli were free of fluorescence. This indicates that the 5' terminal of most of the nucleoplasmic snRNAs are not protected by an m3G cap-recognizing protein and that the snRNA caps are not necessarily required for the binding of snRNPs to subnuclear structures. The snRNAs in the nucleoplasm appeared as distinct units in the light microscope, and this allowed the comparison of the distribution of snRNP proteins by double label studies with anti-RNP or anti-Sm antibodies within the same cell. The three antibody classes produced superimposable fluorescent patterns. Taking into account that the various IgGs react with antigenic sites on snRNAs or snRNP proteins not shared by all the snRNP species, these data suggest that U1 snRNP particles are distributed in the same way as the other snRNPs in the nucleus. Qualitatively the same results were obtained with DNase-treated nuclear matrices indicating that intact snRNPs are part of the nuclear matrix. Our data are consistent with proposals that the various snRNPs may be involved in processing of hnRNA and that this may take place at the nuclear matrix.  相似文献   

13.
J Hamm  I W Mattaj 《The EMBO journal》1989,8(13):4179-4187
The particle state of U snRNPs was analyzed in oocytes, eggs, embryos and testes from Xenopus laevis. In each case both the relative abundance and the composition of some U snRNPs were found to differ from that of somatic cells. U2 and U6 snRNPs were the most prominent U snRNPs in germ cells and early embryos. In particular, the concentration of U6 snRNA was 10-20 times higher than that of U4 snRNA. Most of the U6 snRNA was not associated with U4 snRNA and migrated on sucrose gradients as a U6 snRNP. The structure of this novel U snRNP was analyzed. A single protein of 50 kd was copurified with U6 snRNPs by a combination of gradient fractionation, immunodepletion with anti-Sm antibodies and immunoprecipitation with anti-6-methyl adenosine antibodies. Although the U6 snRNP did not contain Sm proteins it migrated into the nucleus when U6 snRNA was injected into the cytoplasm of oocytes. Two U6 snRNA elements have been identified. The first is essential for nuclear migration in oocytes, but not for the formation of U4/6 snRNPs in vitro and might be the binding site of a U6-specific protein. The second element was required for interaction with U4 snRNPs but not for nuclear targeting.  相似文献   

14.
15.
In the mammalian cell nucleus pre-mRNA splicing factors such as U snRNPs are concentrated in distinct subnuclear compartments named perichromatin fibrils (PFs), interchromatin granules (IGs), interchromatin granule-associated zones (IG-associated zones), and coiled bodies (CBs). The structural requirement for the localization of U snRNPs to these domains was investigated by microinjection of digoxygenin-labeled in vitro-reconstituted U1 snRNPs and mutants thereof and subsequent analysis by immunoelectron microscopy. Wild-type U1 snRNP was targeted, after injection into the cytoplasm, to the nucleus and localized in PFs, IGs, IG-associated zones, and CBs. Thus, microinjected U1 snRNP particles exhibited a subnuclear localization similar to that previously observed for endogenous U1 snRNPs. Specific U snRNP proteins were shown not to be essential for subnuclear targeting since U1 snRNP mutants that did not bind to 70K, A, or C peptides were distributed in the cell nucleus in a pattern indistinguishable from that of wild-type U1 snRNP. Moreover, the Sm core domain, common to all spliceosomal U snRNPs, was shown to be sufficient for appropriate subnuclear distribution. Thus, these observations indicate that the Sm core domain, previously shown to be essential for nuclear import of spliceosomal U1 snRNPs, is also important for mediating the targeting to distinct nuclear subcompartments.  相似文献   

16.
17.
Kinetic competition experiments have demonstrated that at least some factors required for the nuclear import of proteins and U snRNPs are distinct. Both import processes require energy, and in the case of protein import, the energy requirement is known to be at least partly met by GTP hydrolysis by the Ran GTPase. We have compared the effects of nonhydrolyzable GTP analogues and two mutant Ran proteins on the nuclear import of proteins and U snRNPs in vitro. The mutant Ran proteins have different defects; Q69L (glutamine 69 changed to leucine) is defective in GTP hydrolysis while T24N (threonine 24 changed to asparagine) is defective in binding GTP. Both protein and snRNP import are sensitive either to the presence of the two mutant Ran proteins, which act as dominant negative inhibitors of nuclear import, or to incubation with nonhydrolyzable GTP analogues. This demonstrates that there is a requirement for a GTPase activity for the import of U snRNPs, as well as proteins, into the nucleus. The dominant negative effects of the two mutant Ran proteins indicate that the pathways of protein and snRNP import share at lease one common component.  相似文献   

18.
19.
20.
Antibodies specific for N6-methyladenosine (m6A) were elicited in rabbits and used to study the accessibility in intact snRNPs of the m6A residues present in the snRNAs U2, U4 and U6. The antibody quantitatively precipitates snRNPs U2 and U4/U6 from total nucleoplasmic snRNPs U1-U6 isolated from HeLa cells, which demonstrates that the m6A residues of the respective snRNAs are not protected by snRNP proteins in the snRNP particles. While the anti-m6A IgG does not react at all with U5 RNPs lacking m6A, a significant amount of U1 RNPs was co-precipitated despite the fact that U1 RNA does not contain m6A either. Since anti-m6A IgG does not react with purified U1 RNPs and co-precipitation of U1 RNPs is dependent on the presence of U2 RNPs but not of U4/U6 RNPs, these data indicate an interaction between snRNPs U1 and U2 in vitro. The anti-m6A precipitation pattern described above was also observed with snRNPs isolation from mouse Ehrlich ascites tumor cells, indicating similar three-dimensional arrangements of snRNAs in homologous snRNP particles from different organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号