首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abundances and photophysiological parameters in the model cyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803 over a 120 hour time course of iron deprivation. The iron stress induced protein (IsiA) accumulated to high levels within 48 h of the onset of iron deprivation, reaching a molar ratio of ∼42 IsiA : Photosystem I in Synechococcus PCC 7942 and ∼12 IsiA : Photosystem I in Synechocystis PCC 6803. Concomitantly the iron-rich complexes Cytochrome b6f and Photosystem I declined in abundance, leading to a decrease in the Photosystem I : Photosystem II ratio. Chlorophyll fluorescence analyses showed a drop in electron transport per Photosystem II in Synechococcus, but not in Synechocystis after iron depletion. We found no evidence that the accumulated IsiA contributes to light capture by Photosystem II complexes.  相似文献   

2.
Sarah Joshua 《BBA》2005,1709(1):58-68
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

3.
The previously constructed MSP (manganese stabilizing protein-psbO gene product)-free mutant of Synechococcus PCC7942 (Bockholt R, Masepohl B and Pistorius E K (1991) FEBS Lett 294: 59–63) and a newly constructed MSP-free mutant of Synechocystis PCC6803 were investigated with respect to the inactivation of the water-oxidizing enzyme during dark incubation. O2 evolution in the MSP-free mutant cells, when measured with a sequence of short saturating light flashes, was practically zero after an extended dark adaptation, while O2 evolution in the corresponding wild type cells remained nearly constant. It could be shown that this inactivation could be reversed by photoactivation. With isolated thylakoid membranes from the MSP-free mutant of PCC7942, it could be demonstrated that photoactivation required illumination in the presence of Mn2+ and Ca2+, while Cl addition was not required under our experimental conditions. Moreover, an extended analysis of the kinetic properties of the water-oxidizing enzyme (kinetics of the S3(S4)S0 transition, S-state distribution, deactivation kinetics) in wild type and mutant cells of Synechococcus PCC7942 and Synechocystis PCC6803 was performed, and the events possibly leading to the reversible inactivation of the water-oxidizing enzyme in the mutant cells are discussed. We could also show that the water-oxidizing enzyme in the MSP-free mutant cells is more sensitive to inhibition by added NH4Cl-suggesting that NH3 might be a physiological inhibitor of the water oxidizing enzyme in the absence of MSP.Abbreviations Chl chlorophyll - DCBQ 2,6-Dichloro-p-benzoquinone - MSP manganese stabilizing protein (psbO gene product) - PS II Photosystem II - WOE water oxidizing enzyme - WT wild type This paper is dedicated to Prof. Dr. Bernard Axelrod on the occasion of his 80th birthday  相似文献   

4.
5.
6.
We have determined the complete nucleotide sequence of pAQ1,the smallest plasmid of the unicellular marine cyanobacteriumSynechococcus sp. PCC7002. The plasmid consists of 4,809 bpand has at least four open reading frames that potentially encodepolypeptides of 50 or more amino acids. We found that a palindromicelement, the core sequence of which is G(G/A)CGATCGCC, is over-representednot only in plasmid pAQ1 but also in the accumulated cyanobacterialgenomic sequences from Synechococcus sp. PCC6301, PCC7002, PCC7942,vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBLdatabases. It suggests that this sequence might mediate generearrangement, thus increasing genetic diversity, since recombinationevents are frequent in cyanobacteria.  相似文献   

7.
A high CO2-requiring mutant of Synechocystis PCC6803 (G3) capable of Ci transport but unable to utilize the intracellular Ci pool for photosynthesis was constructed. A DNA clone of 6.1 kbp that transforms the G3 mutant to the wild-type phenotype was isolated from a Synechocystis PCC6803 genomic library. Complementation test with subclones allocated the mutation site within a DNA fragment of 674 bp nucleotides. Sequencing analysis of the mutation region elucidated an open reading frame encoding a 534 amino-acid protein with a significant sequence homology to the protein coded by the ccmN gene of Synechococcus PCC7942. The ccmM-like gene product of Synechocystis PCC6803 contains four internal repeats with a week similarity to the rbcS gene product. An open reading frame homologous to the ccmN gene of Synechococcus PCC7942 was found downstream to the ccmM-like gene. As opposed to the Synechococcus PCC7942 ccmM and ccmN genes located 2 kbp upstream to, and oriented in the same direction as, the rbc operon, the ccm-like genes in Synechocystis PCC6803 are not located within 22 kbp upstream to the rbcL gene of the Rubisco operon. Thus, despite the resemblance in clustering of the ccmM and ccmN genes in both cyanobacterial species, the difference in their genomic location relative to the rbc genes demonstrates variability in structural organization of the genes involved in inorganic carbon acquisition.Abbreviations CCM CO2-concentrating mechanism - Ci inorganic carbon - HCR high CO2-requiring - kbp kilobase pair - ORF open reading frame - Rubisco ribulose 1,5-bisphosphate carboxylase-oxygenase gene - SSC sodium chloride and sodium citrate - WT wild-type  相似文献   

8.
Cyanobacteria have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. The lipids from cyanobacteria can be converted to biodiesel by extraction–transesterification methods. The present study demonstrates the usefulness of the natural plant and microbial growth promoter calliterpenone from the plant Callicarpa macrophylla supplemented at three different doses (15, 25, 50 μL of a 0.01 mM solution) per 100 mL BG11+ medium for enhancing total biomass, carbohydrate, and lipid yields and reducing the surface-to-volume ratios of cells of Synechocystis PCC 6803. The enhanced total dried biomass, carbohydrate, and lipid production was 316.1, 140.34, and 130.76 %, respectively, higher than the control, and were obtained after 15 days of cultivation at the dose of 15 μL (0.01 mM) of calliterpenone per 100 mL BG11+ medium. A decrease in surface-to-volume ratio of cells from 1.19 to 0.84 compared to the control was also observed. Response surface methodology was used to optimize the doses of calliterpenone at different pH of growth media. An increase of 346.95, 187.2, and 134.46 % in biomass, carbohydrate, and lipid yields, respectively, was achieved after 10 days of cultivation in optimized BG11+ media at pH 7.5 and with 20 μL (0.01 mM) calliterpenone per 100 mL. Thus, this biomolecule can be exploited for higher yields of Synechocystis PCC 6803 in a relatively shorter culture time making this an attractive strategy for fuel production using this cyanobacterium.  相似文献   

9.
Synechococcus PCC 7942 contains two fructose-1,6-bisphosphataseisozymes (FBPase-I and FBPase-II), while Synechocystis PCC 6803has only one (FBPase-I) in spite of the occurrence of two FBPaseisozyme genes [Tamoi et al. (1998) Biochim. Biophys. Acta 1383:232]. We now demonstrate that disruption of the gene encodingFBPase-II (fbp-II) with a kanamycin resistance gene cartridgedoes not affect cell growth, Chl content, or CO2 assimilationin Synechococcus PCC 7942, and disruption of the gene encodingFBPase-I (fbp-I) is a lethal mutation in both cyanobacteria.Accordingly, it is clear that FBPase-I is necessary to sustainphotosynthesis and gluconeogenesis in cyanobacteria. (Received September 10, 1998; Accepted December 10, 1998)  相似文献   

10.
The genome of Synechocystis sp. PCC 6803 contains an operon with homology to the sulfate permease of other prokaryotes. We used antibodies raised against cytoplasmic membrane protein to find three genes with strong homology to sbpA, orf81 and cysT genes of the cyanobacterium Synechococcus sp. PCC 7942, Escherichia coli, Salmonella typhymurium and Marchantia polymorpha. It is likely that the permease genes are expressed and the proteins are inserted into the cytoplasmic membrane.  相似文献   

11.
Precipitation of calcite induced by Synechocystis sp. PCC6803   总被引:1,自引:0,他引:1  
Calcite with laminate structure was successfully prepared by culturing Synechocystis sp. PCC6803 with different concentrations of calcium chloride (CaCl2) in BG11 media. S. PCC6803 was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal scanning microscope (LCSM) and energy dispersive spectroscopy (EDS). The effects of Ca2+ concentrations and pH values on calcification were investigated and the micro morphs of the CaCO3 crystals were observed by means of SEM. These results showed that CaCO3 crystals could be more easily formed with increasing the concentration of CaCl2 in S. PCC6803 culture solution. S. PCC6803 could largely bind calcium ions, most of which were present in extracellular polymeric substances and on the cell wall. Inside the cells there were a lot of circular areas rich in calcium ions without the crystallization of calcium. Some cells produced a thicker gelatinous sheath outside of the translucent organic thin layer. And the cells inside also produced major changes that the original chloroplasts were almost transformed into starch grains whose sizes were from 0.5 to 1 μm with relatively uniform in sizes. At the same time the cell sizes significantly reduced to only about 8–9 μm almost changing to half of its original diameters. The calcite crystals with a highly preferred orientation induced by S. PCC6803 were observed with X-ray diffraction (XRD). A critical implication was that S. PCC6803 could induce bio-calcification and then mediate the further growth of CaCO3 crystals in the biological system.  相似文献   

12.
13.
Summary For biocontrol of mosquitoes, mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus have been cloned into a number of cyanobacteria. However, little is known about the persistence of such recombinant cyanobacteria in mosquito larval habitats. Four fresh water unicellular cyanobacteria, Synechococcus PCC6301, PCC7425, PCC7942 and Synechocystis PCC 6803, were evaluated under laboratory conditions related to mosquito breeding environments. Results indicated that Synechococcus PCC6301 was potentially the most suitable organism for use in the natural mosquito habitat as it could tolerate a wide range of temperatures, salinities, and biological and chemical insecticides. Moreover, strain PCC6301 could be ingested and digested by Culex quinquefasciatus larvae and could support the development of larvae to full insect maturity.  相似文献   

14.
A reporter gene assay revealed that promoters derived from Synechococcus PCC7942 (S.7942) psbAI and Synechocystis PCC6803 (S.6803) psbAII were suitable for the expression of foreign ribulose-bisphosphate carboxylase (RuBisCO; EC 4.1.1.39) in S.7942 cells. Transformational vectors with a promoter and a foreign RuBisCO gene, cvrbc originated from Allochromatium vinosum, were constructed on a binary vector, pUC303, and introduced to S.7942 cells. When the cvrbc was expressed with the S.7942 psbAI promoter, the total RuBisCO activity increased 2.5- to 4-fold than that of the wild type cell. The S.6803 psbAII promoter increased the activity of the transformant 1.5–2 times of that of wild type cell. There was a significant increase in the rate of photosynthesis depending on the increase of RuBisCO activity. The maximum rate of photosynthesis of the transformant cell was 1.63 times higher than that of the wild type under the illumination of 400 μmol m−2 s−1, at 20 mM bicarbonate and at 30 °C. Although the photosynthesis of the higher plant is limited by the ability of photosystems under high irradiance and the high CO2 concentration, that of the S.7942 cell is limited by the RuBisCO activity, even at high CO2 concentrations and under high irradiance.  相似文献   

15.
A promoter-probe vector, pSB2A, based on the plasmid RSF1010 and the promoterless chloramphenicol acetyl transferase (cat) reporter gene, has been constructed. pSB2A appeared to be most efficiently transferred by conjugation to the widely used cyanobacteria Synechocystis strains PCC6803 (S.6803) and PCC6714 (S.6714) and Synechococcus strains PCC7942 (S.7942) and PCC6301 (S.6301), where it replicates stably even though it contains no cyanobacterial DNA. Using pSB2A we found that (1) a light-regulated promoter from S.6803 remains controlled by light intensity in S.7942 while it is silent in Escherichia coli, and (2) the E. coli tac promoter behaves as a strong and light-independent promoter in the four cyanobacterial hosts tested.Service de Biochimie et Génétique Moléculaire  相似文献   

16.
Diazotrophic cyanobacteria Anabaena sp. PCC 7120, four Nostoc strains, and two Azotobacter species (A. vinelandii and A. chroococcum) were found to produce gold nanoparticles (GNP) under nitrogen fixation conditions. GNP biogenesis occurred at AuHCl4 concentrations from 0.1 to 1 mM. In the cultures of unicellular cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 incapable of nitrogen fixation, no GNP were formed at the same concentrations of gold salts. The plasmon resonance band peak was located at 552 nm. This position is characteristic of spherical GNP 10 to 30 nm in size. Small amounts of GNP were also formed in the culture liquid supernatants of the tested nitrogen-fixing bacteria at AuHCl4 concentrations from 0.25 to 0.5 mM.  相似文献   

17.
Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Spherical inclusions inside the cell that are electron-transparent and/or slightly electron-dense and that are found in transmission electron micrographs of cyanobacteria are generally assumed to be PHB granules. The aim of this study was to test this assumption in different strains of the cyanobacterium Synechocystis sp. PCC 6803. Inclusions that resemble PHB granules were present in strains lacking a pair of genes essential for PHB synthesis and in wild-type cells under conditions that no PHB granules could be detected by fluorescence staining of PHB. Indeed, in these cells PHB could not be demonstrated chemically by GC/MS either. Based on the results gathered, it is concluded that not all the slightly electron-dense spherical inclusions are PHB granules in Synechocystis sp. PCC 6803. This result is potentially applicable to other cyanobacteria. Alternate assignments for these inclusions are discussed.  相似文献   

18.
Salinity (NaCl) is one of the major problems associated with irrigated agricultural lands, especially rice fields. Being the common inhabitants of rice fields, cyanobacteria frequently experience high concentration of NaCl which in turn causes cellular damage. Therefore, mitigation of NaCl stress in cyanobacteria, plant growth-promoting microorganisms, is of utmost importance. The present study was designed to investigate the role of calcium in the alleviation of NaCl stress-induced cellular in Synechococcus sp. PCC 7942. The cyanobacterium was subjected to sub-lethal concentration of NaCl (800 mM) with and without the supplementation of calcium (1 mM CaCl2) for 8 days. The results showed a drastic reduction in growth due to excess NaCl, but supplementation of CaCl2 reduced the salt stress damage and partially restored growth. Application of calcium increased pigment contents, photosynthetic efficiency, antioxidative enzyme activity, osmolyte contents and reduced the intracellular sodium ion concentration, MDA content, electrolyte leakage and free oxygen radical generation. Furthermore, proteins involved in photosynthesis, respiration, ATP synthesis and protein synthesis along with two hypothetical proteins were also observed to be upregulated in the cyanobacterium in presence of calcium. Furthermore, proteins related to oxidative stress defence, nitrogen metabolism, carbohydrate metabolism, fatty acid metabolism and secondary metabolism were found to be upregulated by several fold. Therefore, our study suggests that calcium suppresses salt toxicity in Synechococcus sp. PCC 7942 by restricting the entry of Na+ into the cell, increasing osmolyte production and upregulating defence-related proteins.  相似文献   

19.
The integrase of actinophage R4, which belongs to the large serine-recombinase family, catalyzes site-specific recombination between two distinct attachment site sequences of the phage (attP) and actinomycete Streptomyces parvulus 2297 chromosome (attB). We previously reported that R4 integrase (Sre) catalyzed site-specific recombination both in vivo and in vitro. In the present study, a Sre-based system was developed for the stepwise site-specific integration of multiple genes into the chromosome of cyanobacterium Synechocystis sp. PCC 6803 (hereafter PCC 6803). A transgene-integrated plasmid with two attP sites and a non-replicative sre-containing plasmid were co-introduced into attB-inserted PCC 6803 cells. The transiently expressed Sre catalyzed highly efficient site-specific integration between one of the two attP sites on the integration plasmid and the attB site on the chromosome of PCC 6803. A second transgene-integrated plasmid with an attB site was integrated into the residual attP site on the chromosome by repeating site-specific recombination. The transformation frequencies (%) of the first and second integrations were approximately 5.1 × 10?5 and 8.2 × 10?5, respectively. Furthermore, the expression of two transgenes was detected. This study is the first to apply the multiple gene site-specific integration system based on R4 integrase to cyanobacteria.  相似文献   

20.
The ethylene-forming enzyme (EFE) from Pseudomonas syringae catalyzes the synthesis of ethylene which can be easily detected in the headspace of closed cultures. A synthetic codon-optimized gene encoding N-terminal His-tagged EFE (EFEh) was expressed in Synechocystis sp. PCC 6803 (Synechocystis) and Escherichia coli (E. coli) under the control of diverse promoters in a self-replicating broad host-range plasmid. Ethylene synthesis was stably maintained in both organisms in contrast to earlier work in Synechococcus elongatus PCC 7942. The rate of ethylene accumulation was used as a reporter for protein expression in order to assess promoter strength and inducibility with the different expression systems. Several metal-inducible cyanobacterial promoters did not function in E. coli but were well-regulated in cyanobacteria, albeit at a low level of expression. The E. coli promoter Ptrc resulted in constitutive expression in cyanobacteria regardless of whether IPTG was added or not. In contrast, a Lac promoter variant, PA1lacO-1, induced EFE-expression in Synechocystis at a level of expression as high as the Trc promoter and allowed a fine level of IPTG-dependent regulation of protein-expression. The regulation was tight at low cell density and became more relaxed in more dense cultures. A synthetic quorum-sensing promoter system was also constructed and shown to function well in E. coli, however, only a very low level of EFE-activity was observed in Synechocystis, independent of cell density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号