首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raphidophytes (class Raphidophyceae) produce high levels of reactive oxygen species (ROS), yet little is known regarding cellular scavenging mechanisms needed for protection against these radicals. Enzymatic activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in conjunction with the production of superoxide (O2??) and hydrogen peroxide (H2O2) in batch cultures of five different raphidophytes species during early exponential, late‐exponential, and stationary growth phases. The greatest concentrations of O2?? per cell were detected during exponential growth with reduced levels in stationary phases in raphidophytes Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara, Chattonella marina (Subrahman.) Y. Hara et Chihara, and Chattonella antiqua (Hada) Ono (strain 18). Decreasing trends from exponential to stationary phases for SOD activity and H2O2 per cell were observed in all species tested. Significant correlations between O2?? per cell and SOD activity per cell over growth phase were only observed in three raphidophytes (Heterosigma akashiwo, Chattonella marina, and Chattonella antiqua strain 18), likely due to different cellular locations of externally released O2?? radicals and intracellular SOD enzymes measured in this study. CAT activity was greatest at early exponential phase for several raphidophytes, but correlations between H2O2 per cell and CAT activity per cell were only observed for Fibrocapsa japonica Toriumi et Takano, Chattonella antiqua (strain 18), and Chattonella subsalsa Biecheler. Our results suggest that SOD and CAT play important protective roles against ROS during exponential growth of several raphidophytes, while other antioxidant pathways may play a larger role for scavenging ROS during later growth.  相似文献   

2.
Chattonella verruculosa Y. Hara et Chihara was re‐examined by molecular methods and microscopic examination. The 18S rDNA phylogenetic analysis clearly indicated that C. verruculosa is a member of the Dictyochophyceae, with a specific affinity to Florenciella parvula. The morphological features in C. verruculosa– namely the proximal helix with two gyres and many scattered DNA‐containing areas in the chloroplasts – display the evolutionary link to the Dictyochophyceae, instead of the Raphidophyceae. Similarly, unique pyrenoid morphologies are shared between C. verruculosa and the dictyochophycean algae. Combining the molecular data and morphological characteristics, C. verruculosa is transferred to Pseudochattonella gen. nov. of the class Dictyochophyceae as Pseudochattonella verruculosa (Y. Hara et Chihara) Hosoi‐Tanabe, Honda, Fukaya, Inagaki et Sako comb. nov.  相似文献   

3.
Since 1998, a heterokont flagellate initially named Chattonella aff. verruculosa has formed recurrent extensive blooms in the North Sea and the Skagerrak, causing fish mortalities. Cells were isolated from the 2001 bloom off the south coast of Norway, and monoalgal cultures were established and compared with the Chattonella verruculosa Y. Hara et Chihara reference strain NIES 670 from Japan. The cells in Norwegian cultured isolates were very variable in size and form, being large oblong (up to 34 μm long) to small rounded (5–9 μm in diameter) with two unequal flagella, numerous chloroplasts, and mucocysts. The SSU and partial LSU rDNA sequences of strains from Norway and Japan were compared and differed by 0.4% (SSU) and 1.3% (LSU), respectively. Five strains from Norway were identical in the LSU rDNA region. Phylogenetic analyses based on heterokont SSU and concatenated SSU + LSU rDNA sequences placed C. aff. verruculosa and the Japanese C. verruculosa within the clade of Dictyochophyceae, with the picoflagellate Florenciella parvula Eikrem as the closest relative. Ultrastructure, morphology, and pigment composition supported this affinity. We propose the name Verrucophora farcimen sp. et gen. nov. for this flagellate and systematically place it within the class Dictyochophyceae. Our studies also show that C. verruculosa from Japan is genetically and morphologically different but closely related to V. farcimen. The species is transferred from the class Raphidophyceae to the class Dictyochophyceae and renamed Verrucophora verruculosa. We propose a new order, Florenciellales, to accommodate V. farcimen, V. verruculosa, and F. parvula.  相似文献   

4.
Delaware’s Inland Bays (DIB) are subject to numerous mixed blooms of harmful raphidophytes each year, and Heterosigma akashiwo is one of the consistently occurring species. Often, Chattonella subsalsa, C. cf. verruculosa, and Fibrocapsa japonica co-occur with H. akashiwo, indicating a dynamic consortium of raphidophyte species. In this study, microzooplankton grazing pressure was assessed as a top–down control mechanism on H. akashiwo populations in mixed communities. Quantitative real-time polymerase chain reaction (QPCR) with species-specific primers and probes were used in conjunction with the dilution method to assess grazing pressure on H. akashiwo and other raphidophytes. As a comparison, we measured changes in chlorophyll a (chl a) to determine whole community growth and mortality caused by grazing. We detected grazing on H. akashiwo using QPCR in samples where chl a analyses indicated little or no grazing on the total phytoplankton community. Overall, specific microzooplankton grazing pressure on H. akashiwo ranged from 0.88 to 1.88 day−1 at various sites. Experiments conducted on larger sympatric raphidophytes (C. subsalsa, C. cf. verruculosa and F. japonica) demonstrated no significant microzooplankton grazing on these species. Grazing pressure on H. akashiwo may provide a competitive advantage to other raphidophytes such as Chattonella spp. that are too large to be consumed at high rates by microzooplankton and help to shape the dynamics of this harmful algal bloom consortium. Our results show that QPCR can be used in conjunction with the dilution method for evaluation of microzooplankton grazing pressure on specific phytoplankton species within a mixed community. An erratum to this article can be found at  相似文献   

5.
Temporal fluctuations of algicidal micro-organisms against the red tide causing raphidophycean flagellates Chattonella antiqua (Hada) Ono and Heterosigma akashiwo (Hada) Hada ex Hara et Chihara were investigated using the microplate most probable number (MPN) method in northern Hiroshima Bay and Harima-Nada, the Seto Inland Sea, in 1992 and 1993. In Har-ima-Nada, both flagellates appeared at low levels (< 1 cell mL?1), and killer micro-organisms against the two flagellates (C-killer for C. antiqua and H-killer for H. akashiwo) also appeared at low densities (< 2 mL?1). In northern Hiroshima Bay, C. antiqua cells were scarce (< 1 cell mL?1), and C-killers occurred at a low level (≤ 3.4 mL?1). Conversely, red tides of H. akashiwo occurred there in June of both years. The dynamics of H-killers revealed a close relationship with that of H. akashiwo populations. H-killers followed the increase of H. akashiwo cells, reached a maximum level after the beginning of decline of H. akashiwo, maintained a high level for at least 1 week after the crash of bloom, and then decreased. C-killers consistently remained at low densities during the period of H. akashiwo red tides in both 1992 and 1993. Hence, algicidal micro-organisms specifically associated with the occurrence and crash of H. akashiwo red tides, and presumably contributed to the rapid termination of the red tides in the coastal seas such as northern Hiroshima Bay.  相似文献   

6.
Massive fish kills caused by bloom‐forming species of the Raphidophyceae occur in many marine coastal areas and often cause significant economic losses. The ultrastructure and phylogeny of marine raphidophytes from the Brazilian coast have not been fully analyzed. Here, we present the first combined morphological and genetic characterization of raphidophyte strains from the Brazilian coast. Ten strains of four raphidophyte species (Chattonella subsalsa, C. antiqua, Heterosigma akashiwo, and Fibrocapsa japonica) were characterized based on morphology (including ultrastructure) and LSU rDNA sequences. Chattonella subsalsa and C. antiqua formed two distinct genetic clades. We found that the cell size is the only phenotypic feature separating C. subsalsa and C. antiqua strains from Brazil, whereas traditional characteristics used for species separation in the genus Chattonella (i.e., tail size, chloroplast presence in the tail, ‘oboe‐shaped’ mucocysts, and presence of thylakoids in the pyrenoid matrix) were not sufficiently discriminative, due to their overlapping in the two taxa. The phylogenetic analysis indicated intra‐specific geographic differences among C. subsalsa sequences, with two subclades: one formed by isolates from Brazil, USA, and Iran, and another by a sequence from the Adriatic Sea (Italy). Fibrocapsa japonica also showed intra‐specific geographic differences, with a sequence from a Brazilian strain grouped with strains from Japan, Australia, and Germany, all of them distinct from the Italian isolates. This is the first combined morphological and phylogenetic analysis of raphidophytes from the South Atlantic. Our findings broaden knowledge of the biodiversity of this important bloom‐forming algal group.  相似文献   

7.
Over the past 5 years, raphidophyte blooms have been frequently observed along the South Carolina coastal zone. During the 2002, 2003, and 2004 sampling seasons, we investigated temporal fluctuations of algicidal bacteria abundance against raphidophycean flagellates (Heterosigma akashiwo, Chattonella subsalsa, and Fibrocapsa japonica) using the microplate most probable number (MPN) method in three Kiawah Island brackish stormwater detention ponds (K1, K2, and K75). Local axenic isolates of H. akashiwo, C. subsalsa, and F. japonica were obtained and their susceptibility to algicidal bacteria tested. A total of 195 algicidal bacterial strains were isolated from raphidophyte blooms in the study ponds, and 6 of them were identified at the genus level, and the taxonomic specificity of their algicidal activity was tested against local (pond) and nonlocal isolates of raphidophytes (3 species, 10 total strains). In the ponds, a consistent association was found between raphidophyte bloom development and an increase in bacteria algicidal to the bloom species. In 12 of 15 cases, bloom decline followed the increase in algicidal bacteria to maximum abundances. Although variability was found in the taxonomic specificity of the algicidal bacteria effect (i.e. the number of raphidophyte species affected by a particular bacteria strain) and raphidophyte susceptibility (i.e. the number bacteria strains affecting a particular raphidophyte species), a toxic effect was always found when strains of a raphidophyte species were exposed to algicidal bacteria isolated from a bloom caused by that same species. The results suggest that algicidal bacteria may be an important limiting factor in raphidophyte bloom sustenance and can promote bloom decline in brackish lagoonal eutrophic estuaries.  相似文献   

8.
The toxic marine dinoflagellates Alexandrium tamarense (Lebor) Balech and A. catenella (Whedon and Kofoid) Taylor have been mainly responsible for paralytic shellfish poisoning in Japan. Rapid and precise identification of these algae has been difficult because this genus contains many morphologically similar toxic and nontoxic species. Here, we report a rapid, precise, and quantitative identification method using three fluorescent, rRNA‐targeted, oligonucleotide probes for A. tamarense (Atm1), A. catenella (Act1), and the nontoxic A. affine (Inoue et Fukuyo; Aaf1). Each probe was species specific when applied using fluorescence in situ hybridization (FISH). None of the probes reacted with three other Alexandrium spp., A. lusitanicum Balech, A. ostenfeldii (Paulsen) Balech & Tangen, and A. insuetum Balech, or with eight other microalgae, including Gymnodinium mikimotoi Miyake et Kominami ex Oda and Heterosigma akashiwo (Hada) Hara et Chihara, suggesting that the species specificity of each probe was very high. Cells labeled with fluorescein 5‐isothiocyanate–conjugated probes showed strong green fluorescence throughout the whole cell except for the nucleus. FISH could be completed within 1 h and largely eliminated the need for identifying species based on key morphological criteria. More than 80% of targeted cells of both species could be identified by microscopy and quantified during growth up to the early stationary phase; more than 70% of cells could be detected in the late stationary phase. The established FISH protocol was found to be a specific, rapid, precise, and quantitative method that might prove to be a useful tool to distinguish and quantify Alexandrium cells collected from Japanese coastal waters.  相似文献   

9.
The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad salinity tolerance appears to provide a refuge from predation that enhances the net growth of H. akashiwo populations through several mechanisms. (1) Contrasting salinity tolerance of predators and prey. Estuarine H. akashiwo isolates from the west coast of North America grew rapidly at salinities as low as six, and distributed throughout experimental salinity gradients to salinities as low as three. In contrast, survival of most protistan predator species was restricted to salinities >15. (2) H. akashiwo physiological and behavioral plasticity. Acclimation to low salinity enhanced H. akashiwo's ability to accumulate and grow in low salinity waters. In addition, the presence of a ciliate predator altered H. akashiwo swimming behavior, promoting accumulation in low‐salinity surface layers inhospitable to the ciliate. (3) Negative effects of low salinity on predation processes. Ciliate predation rates decreased sharply at salinities <25 and, for one species, H. akashiwo toxicity increased at low salinities. Taken together, these behaviors and responses imply that blooms can readily initiate in low salinity waters where H. akashiwo would experience decreased predation pressure while maintaining near‐maximal growth rates. The salinity structure of a typical estuary would provide this HAB species a unique refuge from predation. Broad salinity tolerance in raphidophytes may have evolved in part as a response to selective pressures associated with predation.  相似文献   

10.
11.
High levels of intraspecific variability are often associated with HAB species, and this variability is likely an important factor in their competitive success. Heterosigma akashiwo (Hada) Hada ex Y. Hara et M. Chihara is an ichthyotoxic raphidophyte capable of forming dense surface‐water blooms in temperate coastal regions throughout the world. We isolated four strains of H. akashiwo from fish‐killing northern Puget Sound blooms in 2006 and 2007. By assessing numerous aspects of biochemistry, physiology, and toxicity, we were able to describe distinct ecotypes that may be related to isolation location, source population, or bloom timing. Contrasting elements among strains were cell size, maximum growth and photosynthesis rates, tolerance of low salinities, amino acid use, and toxicity to the ciliate grazer Strombidinopsis acuminatum (Fauré‐Fremiet). In addition, the rDNA sequences and chloroplast genome of each isolate were examined, and while all rDNA sequences were identical, the chloroplast genome identified differences among the strains that tracked differences in ecotype. H. akashiwo strain 07A, which was isolated from an unusual spring bloom, had a significantly higher maximum potential photosynthesis rate (28.7 pg C · cell?1 · h?1) and consistently exhibited the highest growth rates. Strains 06A and 06B were not genetically distinct from one another and were able to grow on the amino acids glutamine and alanine, while the other two strains could not. Strain 07B, which is genetically distinct from the other three strains, exhibited the only nontoxic effect. Thus, molecular tools may support identification, tracking, and prediction of strains and/or ecotypes using distinctive chloroplast gene signatures.  相似文献   

12.
Two free‐living marine euplotid ciliates, Pseudodiophrys nigricans and Diophrys japonica, collected from the coastal waters off Qingdao, northern China, were investigated using live observations and protargol impregnation methods. The cortical development of P. nigricans was observed during binary division. Although its general pattern of morphogenesis is similar to that of other Diophrys‐like species, three unusual features are noteworthy: 1) the frontoventral transverse cirral anlagen develop in the secondary mode, similar to that of Euplotes; 2) the undulating membrane anlage migrates far from the cytostome and does not split into two membranes; and 3) the parental adoral zone of membranelles remains nearly intact throughout the entire morphogenetic process. Diophrys japonica is redescribed based on a Chinese population and can be recognized by having one left marginal cirrus, densely arranged cortical granules, and a fragment kinety with three dikinetids. Phylogenetic analyses based on the small subunit rRNA (SSU rRNA) gene sequence data indicate that D. japonica is placed within the Diophrys clade and is most closely related to the well‐known D. apoligothrix. © J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A toxicological study of an axenic cell line of novel species Chattonella ovata Y. Hara et Chihara (Raphidophyceae) revealed that cultured species of sea bream (Pagrus major), horse mackerel (Trachurus japonicus), and yellowtail (Seriola quinqueradiata) were killed by 4.1–6.8 × 103, 5.4 × 103, and 2.8 × 103 cells/mL, respectively. The sensitivity of the gill lamellae to C. ovata differed among the fish species tested. This finding revealed that C. ovata was highly toxic to the cultured fish. Histological examination showed that edema and hyperplasia of the secondary gill lamellae of red sea bream and horse mackerel occurred when exposed to, or killed by C. ovata, whereas severe damage in the gill lamellae was not observed in yellowtail. Chattonella produced high amounts of superoxide anion radicals and hydrogen peroxide, possibly responsible for the fish death observed. Based on the results of this study and occurrence of a red tide by this organism in China in 2001, we consider this organism to be one of the harmful algae in coastal waters. This is the first report demonstrating that C. ovata is highly toxic to fish, and that it produces superoxide and hydrogen peroxide.  相似文献   

14.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

15.
Heterosigma akashiwo and Chattonella species (Raphidophyceae) are difficult to detect and quantify in environmental samples because of their pleomorphic and fragile cell nature. In this study, we developed a quantitative real-time polymerase chain reaction (qRT-PCR) assay for the enumeration of these algal taxa using a new DNA-binding dye, EvaGreen. Species-specific qRT PCR primers to H. akashiwo, Chattonella antiqua, Chattonella marina, Chattonella ovata, and Chattonella subsalsa were designed to target the ITS2 rRNA gene intergenic region. Primer specificities were tested via BLAST searches. In addition, specificity was verified using empirical tests, including competitive PCR. The qRT PCR assay analyzing C t value and the log of cell number showed a significant linear relationship (r 2?≥?0.997). When light microscopy was used to monitor the population dynamics of targeted Raphidophyceae from Lake Shihwa, H. akashiwo was detected in ten samples and no Chattonella spp. were detected (70 samples collected from May, 2007 to January, 2008). In contrast, when the qRT-PCR assay was used, H. akashiwo was detected in 41 samples. C. antiqua, C. marina, and C. ovata were detected in eight samples. Most of the samples analyzed using qRT-PCR assays showed higher algal numbers than did those assayed via microscopy, suggesting that the enumeration of Raphidophyceae via classic microscopic methods most likely underestimates true algal concentration.  相似文献   

16.
Cysts of a chain‐forming dinoflagellate Gyrodinium impudicum Fraga et Bravo (Gymnodiniales) were found in surface sediments of Harima‐Nada and Nakaumi, western Japan. The detailed morphology of living and empty cysts is described. The living cysts are roundish to ellipsoidal in polar view, and hemispherical in lateral view. Among three empty cysts obtained, two different archeopyles were observed; either a long slit with an operculum, or a hole with irregular zigzag outline. The living cysts of Gyro. impudicum are morphologically similar to those of the genus Chattonella antiqua (Hada) Ono and Chattonella marina (Subrahmanyan) Y. Hara et Chihara (Raphidophyceae), except cyst color and contents. The living cysts of Gyro. impudicum were rarely encountered, and their density was always less than 1 cell in 1 cm?3 in the present samples.  相似文献   

17.
The objectives of this study were to determine rDNA sequences of the most common Dinophysis species in Scandinavian waters and to resolve their phylogenetic relationships within the genus and to other dinoflagellates. A third aim was to examine the intraspecific variation in D. acuminata and D. norvegica, because these two species are highly variable in both morphology and toxicity. We obtained nucleotide sequences of coding (small subunit [SSU], partial large subunit [LSU], 5.8S) and noncoding (internal transcribed spacer [ITS]1, ITS2) parts of the rRNA operon by PCR amplification of one or two Dinophysis cells isolated from natural water samples. The three photosynthetic species D. acuminata, D. acuta, and D. norvegica differed in only 5 to 8 of 1802 base pairs (bp) within the SSU rRNA gene. The nonphotosynthetic D. rotundata (synonym Phalacroma rotundatum[Claparède et Lachmann] Kofoid et Michener), however, differed in approximately 55 bp compared with the three photosynthetic species. In the D1 and D2 domains of LSU rDNA, the phototrophic species differed among themselves by 3 to 12 of 733 bp, whereas they differed from D. rotundata by more than 100 bp. This supports the distinction between Dinophysis and Phalacroma. In the phylogenetic analyses based on SSU rDNA, all Dinophysis species were grouped into a common clade in which D. rotundata diverged first. The results indicate an early divergence of Dinophysis within the Dinophyta. The LSU phylogenetic analyses, including 4 new and 11 Dinophysis sequences from EMBL, identified two major clades within the phototrophic species. Little or no intraspecific genetic variation was found in the ITS1–ITS2 region of single cells of D. norvegica and D. acuminata from Norway, but the delineation between these two species was not always clear.  相似文献   

18.
Syndinean dinoflagellates of the genus Euduboscquella infect marine ciliates and dinoflagellates. Euduboscquella species infecting dinoflagellates are understudied relative to congeners infecting ciliates and their molecular phylogeny remains uncertain. Morphology, development, and rRNA gene sequences of intracellular parasites infecting heterotrophic dinoflagellates from coastal waters of Busan, Republic of Korea in summer to fall of 2019–2021 indicate that Cucumeridinium coeruleum, Gyrodinium cf. ochraceum, and two unidentified species of Gyrodinium were each infected by a different Euduboscquella species. Morphological features including shield structure, shape and color of the mature trophont, and sporogenic process distinguished each of the four parasites from the 10 previously described species of Euduboscquella. Our molecular and phylogenetic analyses showed considerably greater genetic distance of SSU and ITS-LSU rRNA gene regions among Euduboscquella species infecting dinoflagellates than among those infecting ciliates. Rather than clustering as a group with Euduboscquella species infecting ciliates, SSU rRNA sequences of the four novel parasites spread out across the syndinean Group I phylogeny, occurring in two different clades and a new lineage. Placement of our novel parasites in multiple clades that encompass Ichythyodinium chabelardi strongly indicates that the genus Euduboscquella is paraphyletic.  相似文献   

19.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

20.
The qualitative and quantitative composition of phytoplankton in the area of a sea farm in Vostok Bay (Sea of Japan) was investigated from July 2001 to May 2002. The overall numbers of phytoplankton were 0.008 to 5.3 million cells/liter, and the biomass was 0.02 to 20.5 g/m3. The maximum density and biomass of phytoplankton were observed in summer, fall, and winter. Ten species known to be toxic were recorded. Of these, Pseudo-nitzschia multiseries (Hasle) Hasle, Alexandrium acatenella (Whedon et Kofoid) Balech, and Chattonella marina (Subrahmanyan) Hara et Chihara were found in Vostok Bay for the first time. For the diatom Skeletonema costatum (Greville) Cleve, which is an indicator of extremely eutrophic waters, the cell density was positively correlated with the area of the culture site.Original Russian Text Copyright © 2005 by Biologiya Morya, Morozova, Orlova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号