首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000-2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives.  相似文献   

2.
Primates are globally recognized as an important component of biodiversity, however, more than half of primate species in the world are threatened and agriculture expansion is one of the main threats. Brazil has one of the largest networks of protected areas (PAs) in the world, but there are some conservation gaps, such as the Amazonian savannas. We aim to identify a network of priority areas to conserve a Brazilian Amazonian savanna highly threatened by agriculture expansion, by using seven primate species and four vegetation types as targets. We constructed species distribution models (SDMs) for the primates and used a Systematic Conservation Planning approach. We defined as a quantitative conservation target the proportion of the distribution of each primate species within the network according to traits related to their vulnerability to extinction. In addition, we set a target of including at least 30% of each savanna type within priority areas. We created a map of potential use of the land for agriculture and another of environmental risk, which were included as costs in the decision process, and together with the SDMs and vegetation types, identified the network of priority areas by using the software Marxan. We evaluated the feasibility of implementing conservation actions, such as establishing Conservation Units (e.g. reserves managed by the government), or implementing community-based conservation actions in each priority area. Additionally, we estimated the economic investment (US$/year) required to establish Conservation Units across the priority areas. Conservation targets for primates and vegetation types were met by protecting 3,240 km2 of the Savannas of Amapá. An investment of approximately US$958,122/year over five years is required to turn these priority areas into Conservation Units, however, we propose other strategies such as conservation on community lands and public policies. All these strategies would allow for protecting forest cover and the heterogeneous environments that are suitable for primates and other biodiversity components.  相似文献   

3.
There are now over 100000 protected areas worldwide, covering over 12% of the Earth's land surface. These areas represent one of the most significant human resource use allocations on the planet. The importance of protected areas is reflected in their widely accepted role as an indicator for global targets and environmental assessments. However, measuring the number and extent of protected areas only provides a unidimensional indicator of political commitment to biodiversity conservation. Data on the geographic location and spatial extent of protected areas will not provide information on a key determinant for meeting global biodiversity targets: 'effectiveness' in conserving biodiversity. Although tools are being devised to assess management effectiveness, there is no globally accepted metric. Nevertheless, the numerical, spatial and geographic attributes of protected areas can be further enhanced by investigation of the biodiversity coverage of these protected areas, using species, habitats or biogeographic classifications. This paper reviews the current global extent of protected areas in terms of geopolitical and habitat coverage, and considers their value as a global indicator of conservation action or response. The paper discusses the role of the World Database on Protected Areas and collection and quality control issues, and identifies areas for improvement, including how conservation effectiveness indicators may be included in the database to improve the value of protected areas data as an indicator for meeting global biodiversity targets.  相似文献   

4.
Future battlegrounds for conservation under global change   总被引:2,自引:0,他引:2  
Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change.  相似文献   

5.
A new international initiative for plant conservation was first called for as a resolution of the International Botanical Congress in 1999. The natural home for such an initiative was considered to be the Convention on Biological Diversity (CBD), and the Conference of the Parties (COP) to the CBD agreed to consider a Global Strategy for Plant Conservation (GSPC) at its 5th meeting in 2000. It was proposed that the GSPC could provide an innovative model approach for target setting within the CBD and, prior to COP5, a series of inter-sessional papers on proposed targets and their justification were developed by plant conservation experts. Key factors that ensured the adoption of the GSPC by the CBD in 2002 included: (1) ensuring that prior to and during COP5, key Parties in each region were supportive of the Strategy; (2) setting targets at the global level and not attempting to impose these nationally; and (3) the offer by Botanic Gardens Conservation International (BGCI) to support a GSPC position in the CBD Secretariat for 3 years, which provided a clear indication of the support for the GSPC from non-governmental organizations (NGO).  相似文献   

6.

Conservation programmes are always limited by available resources. Careful planning is therefore required to increase the efficiency of conservation and gap analysis can be used for this purpose. This method was used to assess the representativeness of current ex situ and in situ conservation actions of 234 priority crop wild relatives (CWR) in Indonesia. This analysis also included species distribution modelling, the creation of an ecogeographical land characterization map, and a complementarity analysis to identify priorities area for in situ conservation and for further collecting of ex situ conservation programmes. The results show that both current ex situ and in situ conservation actions are insufficient. Sixty-six percent of priority CWRs have no recorded ex situ collections. Eighty CWRs with ex situ collections are still under-represented in the national genebanks and 65 CWRs have no presence records within the existing protected area network although 60 are predicted to exist in several protected areas according to their potential distribution models. The complementarity analysis shows that a minimum of 61 complementary grid areas (complementary based on grid cells) are required to conserve all priority taxa and 40 complementary protected areas (complementary based on existing protected areas) are required to conserve those with known populations within the existing in situ protected area network. The top ten of complementary protected areas are proposed as the initial areas for the development of CWR genetic reserves network in Indonesia. It is recommended to enhanced coordination between ex situ and in situ conservation stakeholders for sustaining the long term conservation of CWR in Indonesia. Implementation of the research recommendations will provide for the first time an effective conservation planning of Indonesia’s CWR diversity and will significantly enhance the country’s food and nutritional security.

  相似文献   

7.
海洋和沿海生物多样性保护和可持续利用等问题是《生物多样性公约》谈判的重要领域。本文梳理了历次缔约方大会的谈判进程, 认为主要焦点议题包括: (1)应对人类活动和全球气候变化对海洋和沿海生物多样性的影响; (2)海洋和沿海生物多样性保护和可持续利用的工具; (3)海洋保护区及具有重要生态或生物学意义的海域。这些议题的讨论将影响包括全球海洋保护区建设在内的海洋生物多样性保护进程, 也将影响全球海洋生物多样性保护国际制度的建设, 以及沿海国家的社会经济。我国应加强履约谈判的技术支持, 加快涉海相关问题研究, 积极参与相关国际谈判, 并大力宣传我国经验。  相似文献   

8.
Governments have agreed to expand the global protected area network from 13% to 17% of the world''s land surface by 2020 (Aichi target 11) and to prevent the further loss of known threatened species (Aichi target 12). These targets are interdependent, as protected areas can stem biodiversity loss when strategically located and effectively managed. However, the global protected area estate is currently biased toward locations that are cheap to protect and away from important areas for biodiversity. Here we use data on the distribution of protected areas and threatened terrestrial birds, mammals, and amphibians to assess current and possible future coverage of these species under the convention. We discover that 17% of the 4,118 threatened vertebrates are not found in a single protected area and that fully 85% are not adequately covered (i.e., to a level consistent with their likely persistence). Using systematic conservation planning, we show that expanding protected areas to reach 17% coverage by protecting the cheapest land, even if ecoregionally representative, would increase the number of threatened vertebrates covered by only 6%. However, the nonlinear relationship between the cost of acquiring land and species coverage means that fivefold more threatened vertebrates could be adequately covered for only 1.5 times the cost of the cheapest solution, if cost efficiency and threatened vertebrates are both incorporated into protected area decision making. These results are robust to known errors in the vertebrate range maps. The Convention on Biological Diversity targets may stimulate major expansion of the global protected area estate. If this expansion is to secure a future for imperiled species, new protected areas must be sited more strategically than is presently the case.  相似文献   

9.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

10.
Forero-Medina G  Joppa L 《PloS one》2010,5(10):e13210

Background

How do national-level actions overlap with global priorities for conservation? Answering this question is especially important in countries with high and unique biological diversity like Colombia. Global biodiversity schemes provide conservation guidance at a large scale, while national governments gazette land for protection based on a combination of criteria at regional or local scales. Information on how a protected area network represents global and national conservation priorities is crucial for finding gaps in coverage and for future expansion of the system.

Methodology/Principal Findings

We evaluated the agreement of Colombia''s protected area network with global conservation priorities, and the extent to which the network reflects the country''s biomes, species richness, and common environmental and physical conditions. We used this information to identify priority biomes for conservation. We find the dominant strategy in Colombia has been a proactive one, allocating the highest proportion of protected land on intact, difficult to access and species rich areas like the Amazon. Threatened and unique areas are disproportionately absent from Colombia''s protected lands. We highlight six biomes in Colombia as conservation priorities that should be considered in any future expansion of Colombia''s protected area network. Two of these biomes have less than 3% of their area protected and more than 70% of their area transformed for human use. One has less than 3% protected and high numbers of threatened vertebrates. Three biomes fall in both categories.

Conclusions

Expansion of Colombia''s Protected Area Network should consider the current representativeness of the network. We indicate six priority biomes that can contribute to improving the representation of threatened species and biomes in Colombia.  相似文献   

11.
Guerrero is one of the most diverse states of Mexico, containing a large number of endemic and endangered amphibian species. However, it is one of the less protected and studied states of the country. Here, we determined the potential distribution of all amphibian species in a risk category present in Guerrero and defined priority areas for amphibian conservation in the state. We modelled the potential distribution of 32 species using the maximum entropy modelling algorithm. These models were used to define priority areas through systematic conservation planning tools. The most important variables explaining species’ potential distribution were measures of climate variability, particularly temperature seasonality. The priority areas for amphibian conservation identified covered a total area of 12,212.72 km2 and contained an important proportion (almost a third) of the cloud mountain forests of the state. The most important planning units for meeting species targets and the most important planning units in terms of biodiversity overlapped in approximately the same planning units, located in the biogeographic regions of the Sierra Madre del Sur and the Pacific Coast. Finally, from the total priority areas identified, only 0.31% (38.17 km2) is currently protected within the existing natural protected areas in Guerrero. Thus, we consider that it is essential to protect additional natural areas in the state. Areas Voluntarily Destined for Conservation (ADVC) may be a good option; however, action must be taken to ensure the legitimacy of the processes by the local people and to avoid privileging only certain members of the community.  相似文献   

12.
In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals.  相似文献   

13.
Aim We evaluated Odonata distribution data and predicted the compositional resemblance based on niche‐based species distribution models to analyse the following questions: (1) How is estimated species richness distributed, and how can it be preserved under the actual network of conservation units (a gap analysis approach)? (2) How is the estimated odonate beta diversity distributed, and is there a better distribution of conservation units (a priority setting approach)? (3) Is the probability of being under protection a function of the potential species range size? and (4) Will the current conservation network proposals protect odonate taxa? Location Central Brazil in a core Cerrado area. Methods We generated odonate species distribution predictions based on MaxEnt and maps derived from estimated species richness, beta diversity and gap analysis for all species predicted to occur in the study area. Then, we compared these maps with current conservation units, land‐use patterns and proposals for the establishment of conservation units. Results Raw odonate species records provided limited utility for setting conservation priorities without the use of niche‐based models. However, area under the receiver operating curve (AUC) values were characterized by substantial variation that was related to the number of records. No current conservation units overlapped the areas with higher predicted richness and beta diversity, and in general, conservation units were not preserving restricted/rare species. There was a direct linear correlation between species range size and the proportion of its range protected in the current network of conservation units. Finally, we identified three areas with high odonate beta diversity where conservationist actions should be implemented. Main conclusions Current conservation units and future suggested areas do not overlap regions with high conservation values for odonates. Conservation units protect species at random, and the level of protection has a direct relationship with species range size; thus, wide‐range species are expected to be more protected than restricted or threatened species.  相似文献   

14.
Ecuador has the largest number of species by area worldwide, but also a low representation of species within its protected areas. Here, we applied systematic conservation planning to identify potential areas for conservation in continental Ecuador, with the aim of increasing the representation of terrestrial species diversity in the protected area network. We selected 809 terrestrial species (amphibians, birds, mammals, and plants), for which distributions were estimated via species distribution models (SDMs), using Maxent. For each species we established conservation goals based on conservation priorities, and estimated new potential protected areas using Marxan conservation planning software. For each selected area, we determined their conservation priority and feasibility of establishment, two important aspects in the decision-making processes. We found that according to our conservation goals, the current protected area network contains large conservation gaps. Potential areas for conservation almost double the surface area of currently protected areas. Most of the newly proposed areas are located in the Coast, a region with large conservation gaps and irreversible changes in land use. The most feasible areas for conservation were found in the Amazon and Andes regions, which encompass more undisturbed habitats, and already harbor most of the current reserves. Our study allows defining a viable strategy for preserving Ecuador''s biodiversity, by combining SDMs, GIS-based decision-support software, and priority and feasibility assessments of the selected areas. This approach is useful for complementing protected area networks in countries with great biodiversity, insufficient biological information, and limited resources for conservation.  相似文献   

15.
Protected areas are important in conserving the rapid decline of biodiversity in the Anthropocene. Yet uncertainty persists whether protected areas will continue to meet conservation goals if climate change causes community or ecosystem shifts. Previous research has proven equivocal with some studies finding protected areas fail conservation objectives and others finding objectives are largely met. The effectiveness of protected area systems within tropical Asia and for insects are particularly under-studied. Using species distribution modeling of 68 butterfly species (15,346 locality records), we carried out an evaluation of the effectiveness of protected areas in Hong Kong, one of the most well-covered (40% land area) protected area systems in the Asian tropics, and projected how the ability to protect biodiversity would change under different climate change scenarios and different conservation target schemes. Under climate change, 15–37% of the modeled species in 2000 were projected to become extirpated by 2050. Under all conservation target schemes, the proportion of species unprotected increased or leveled, by up to as much as 7%. If buffer grids were considered as unprotected, the increase in these gap species was much greater, by up to as much as 22%. These results together indicate that under climate change, the effectiveness of protected areas for butterflies in Hong Kong is likely to decrease despite the territory’s relatively high proportion of protected area coverage. We also highlight here the importance of the fortification of partly protected areas in mediating biodiversity loss under the impacts of global change.  相似文献   

16.
全球正在经历第六次物种大灭绝。为了应对生物多样性丧失速率日益加快的严峻挑战, 《生物多样性公约》第十届缔约方大会通过了《生物多样性战略计划》(2011-2020年)及20项爱知生物多样性目标。然而, 2019年IPBES全球评估报告表明, 大部分爱知目标可能无法在2020年实现, 因此, 自然保护需要变革性转变。中国虽然在生物多样性保护方面取得了巨大成就, 提出了系统完整的生态文明制度及建立“以国家公园为主体的自然保护地体系”的目标, 并通过绿盾行动和环保督察提升了生物多样性保护的重要性, 陆地自然保护地覆盖率也已达到18%, 但仍未有效遏制生物多样性下降的趋势, 物种濒危程度持续加剧。尽管生态文明一系列改革已经做出了变革性转变, 中央层面大力推行生物多样性“主流化”的相关政策, 通过机构改革初步解决了自然保护地“九龙治水”的问题, 在国土空间规划和生态保护红线划定中强调了生物多样性保护的重要性, 但是, 生物多样性保护仍然缺乏系统性的解决策略, 需要在不同层面进一步落实“主流化”, 建立完整的法律体系和统一规范高效的保护机制, 保障保护资金, 明确生物多样性在生产、生活空间中的地位, 打通自然保护成果与经济利益的转化渠道。因此, 中国的生物多样性保护应当借助生态文明建设的历史性机遇, 在保护意识、空间布局和保护行动3个方面充分实现变革性的转变, 借助五位一体总体布局, 采用系统化的解决方法, 进一步整合法律、行政、市场、技术和社会等五方面力量, 提出具体的实现路径, 实现保护意识主流化、保护利用统筹化和保护行动全民化等三方面变革性的转变, 形成高效一体化的机制, 以实现“人与自然和谐相处”的生物多样性保护理想状态。  相似文献   

17.
中国生物多样性就地保护成效与展望   总被引:1,自引:0,他引:1  
王伟  李俊生 《生物多样性》2021,29(2):133-1754
生物多样性就地保护是指通过开展自然保护地体系的建立与管理, 结合自然保护地以外其他有效的基于区域的保护措施(other effective area-based conservation measures, OECMs), 从而实现物种种群及其栖息地的保护与恢复以及保障和提升生态系统服务的目标。就地保护是实现2020年全球生物多样性保护目标最为重要的措施之一。本文从自然保护地数量与面积、代表性、有效性, 以及其他生物多样性就地保护措施等方面, 整理和综述了国内外近年来的相关报道。总体来看, 我国基本建立了具有中国特色的生物多样性就地保护与管理体系, 实施了各项生物多样性保护恢复措施, 取得了一系列重大进展。自然保护地的面积和数量均呈现上升趋势, 已覆盖陆域国土面积的18%, 对一些重要生态系统及重点保护物种的保护取得了一定成效。正在建设的10处国家公园体制试点提升了部分重点物种的保护连通性。自然保护区总体管理状况相对较好, 保护了90%以上的哺乳动物和97%的兰科植物。此外, 其他有效的基于区域的保护措施亦为生物多样性就地保护贡献了民间力量。在此基础上, 本文对照《中国生物多样性保护战略与行动计划(2011-2030年)》中对“加强生物多样性就地保护”的各项要求, 分析总结了当前我国生物多样性就地保护仍然存在的问题与不足, 具体表现在以下几个方面: 自然保护地整体保护能力仍有待提升; 生物多样性保护优先区域仍然存在保护空缺; 自然保护区管理质量有待提升; 缺乏公共协商机制; 自然保护地以外的其他就地保护工作仍在探索阶段等。在此基础上, 对将来我国生物多样性就地保护提出了进一步建议与展望: (1)制定更为具体和量化的生物多样性就地保护目标; (2)加大力度减少物种受威胁程度, 特别是受关注较少的物种; (3)以保障和提升生态系统服务为目标, 提升生态系统保护修复的系统性与整体性; (4)加强自然保护地以外的生物多样性就地保护; (5)完善长期监测体系, 为生物多样性就地保护成效评估提供数据支撑。本文可为“2020年后全球生物多样性框架”特别是就地保护目标的制定与实施提供参考。  相似文献   

18.
Identifying Corridors among Large Protected Areas in the United States   总被引:1,自引:0,他引:1  
Conservation scientists emphasize the importance of maintaining a connected network of protected areas to prevent ecosystems and populations from becoming isolated, reduce the risk of extinction, and ultimately sustain biodiversity. Keeping protected areas connected in a network is increasingly recognized as a conservation priority in the current era of rapid climate change. Models that identify suitable linkages between core areas have been used to prioritize potentially important corridors for maintaining functional connectivity. Here, we identify the most “natural” (i.e., least human-modified) corridors between large protected areas in the contiguous Unites States. We aggregated results from multiple connectivity models to develop a composite map of corridors reflecting agreement of models run under different assumptions about how human modification of land may influence connectivity. To identify which land units are most important for sustaining structural connectivity, we used the composite map of corridors to evaluate connectivity priorities in two ways: (1) among land units outside of our pool of large core protected areas and (2) among units administratively protected as Inventoried Roadless (IRAs) or Wilderness Study Areas (WSAs). Corridor values varied substantially among classes of “unprotected” non-core land units, and land units of high connectivity value and priority represent diverse ownerships and existing levels of protections. We provide a ranking of IRAs and WSAs that should be prioritized for additional protection to maintain minimal human modification. Our results provide a coarse-scale assessment of connectivity priorities for maintaining a connected network of protected areas.  相似文献   

19.
Freshwater ecosystems are the most threatened ecosystems worldwide. Argentinian‐protected areas have been established mainly to protect vertebrates and plants in terrestrial ecosystems. In order to create a comprehensive biodiverse conservation plan, it is crucial to integrate both aquatic and terrestrial systems and to include macroinvertebrates. Here, we address this topic by proposing priority areas of conservation including invertebrates, aquatic ecosystems, and their connectivity and land uses. Location: Northwest of Argentina. We modeled the ecological niches of different taxa of macroinvertebrates such as Coleoptera, Ephemeroptera, Hemiptera, Megaloptera, Lepidoptera, Odonata, Plecoptera, Trichoptera, Acari, and Mollusca. Based on these models, we analyzed the contribution of currently established protected areas in the conservation of the aquatic biodiversity and we propose a spatial prioritization taking into account possible conflict regarding different land uses. Our analysis units were the real watersheds, to which were added longitudinal connectivity up and down the rivers. A total of 132 species were modeled in the priority area analyses. The analysis 1 showed that only an insignificant percentage of the macroinvertebrates distribution is within the protected areas in the North West of Argentina. The analyses 2 and 3 recovered similar values of protection for the macroinvertebrate species. The upper part of Bermejo, Salí‐Dulce, San Francisco, and the Upper part of Juramento basins were identified as priority areas of conservation. The aquatic ecosystems need special protection and 10% or even as much as 17% of land conservation is insufficient for species of macroinvertebrates. In turn the protected areas need to combine the aquatic and terrestrial systems and need to include macroinvertebrates as a key group to sustain the biodiversity. In many cases, the land uses are in conflict with the conservation of biodiversity; however, it is possible to apply the connectivity of the watersheds and create multiple‐use modules.  相似文献   

20.
A global overview of the conservation status of tropical dry forests   总被引:9,自引:0,他引:9  
Aim To analyse the conservation status of tropical dry forests at the global scale, by combining a newly developed global distribution map with spatial data describing different threats, and to identify the relative exposure of different forest areas to such threats. Location Global assessment. Methods We present a new global distribution map of tropical dry forest derived from the recently developed MODIS Vegetation Continuous Fields (VCF) product, which depicts percentage tree cover at a resolution of 500 m, combined with previously defined maps of biomes. This distribution map was overlaid with spatial data to estimate the exposure of tropical dry forests to a number of different threats: climate change, habitat fragmentation, fire, human population density and conversion to cropland. The extent of tropical dry forest currently protected was estimated by overlaying the forest map with a global data set of the distribution of protected areas. Results It is estimated that 1,048,700 km2 of tropical dry forest remains, distributed throughout the three tropical regions. More than half of the forest area (54.2%) is located within South America, the remaining area being almost equally divided between North and Central America, Africa and Eurasia, with a relatively small proportion (3.8%) occurring within Australasia and Southeast Asia. Overall, c. 97% of the remaining area of tropical dry forest is at risk from one or more of the threats considered, with highest percentages recorded for Eurasia. The relative exposure to different threats differed between regions: while climate change is relatively significant in the Americas, habitat fragmentation and fire affect a higher proportion of African forests, whereas agricultural conversion and human population density are most influential in Eurasia. Evidence suggests that c. 300,000 km2 of tropical dry forest now coincide with some form of protected area, with 71.8% of this total being located within South America. Main conclusions Virtually all of the tropical dry forests that remain are currently exposed to a variety of different threats, largely resulting from human activity. Taking their high biodiversity value into consideration, this indicates that tropical dry forests should be accorded high conservation priority. The results presented here could be used to identify which forest areas should be accorded highest priority for conservation action. In particular, the expansion of the global protected area network, particularly in Mesoamerica, should be given urgent consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号