首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food, and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor in the reduction of mortality rate by DR in this species.  相似文献   

2.
3.
The effect of calorie restriction (CR) on life span extension, demonstrated in organisms ranging from yeast to mice, may involve the down-regulation of pathways, including Tor, Akt, and Ras. Here, we present data suggesting that yeast Tor1 and Sch9 (a homolog of the mammalian kinases Akt and S6K) is a central component of a network that controls a common set of genes implicated in a metabolic switch from the TCA cycle and respiration to glycolysis and glycerol biosynthesis. During chronological survival, mutants lacking SCH9 depleted extracellular ethanol and reduced stored lipids, but synthesized and released glycerol. Deletion of the glycerol biosynthesis genes GPD1, GPD2, or RHR2, among the most up-regulated in long-lived sch9Δ, tor1Δ, and ras2Δ mutants, was sufficient to reverse chronological life span extension in sch9Δ mutants, suggesting that glycerol production, in addition to the regulation of stress resistance systems, optimizes life span extension. Glycerol, unlike glucose or ethanol, did not adversely affect the life span extension induced by calorie restriction or starvation, suggesting that carbon source substitution may represent an alternative to calorie restriction as a strategy to delay aging.  相似文献   

4.
Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes.  相似文献   

5.
Dietary restriction (DR) extends the lifespan of a wide range of species, although the universality of this effect has never been quantitatively examined. Here, we report the first comprehensive comparative meta-analysis of DR across studies and species. Overall, DR significantly increased lifespan, but this effect is modulated by several factors. In general, DR has less effect in extending lifespan in males and also in non-model organisms. Surprisingly, the proportion of protein intake was more important for life extension via DR than the degree of caloric restriction. Furthermore, we show that reduction in both age-dependent and age-independent mortality rates drives life extension by DR among the well-studied laboratory model species (yeast, nematode worms, fruit flies and rodents). Our results suggest that convergent adaptation to laboratory conditions better explains the observed DR-longevity relationship than evolutionary conservation although alternative explanations are possible.  相似文献   

6.
7.
A model for replicative life span extension by calorie restriction (CR) in yeast has been proposed whereby reduced glucose in the growth medium leads to activation of the NAD+–dependent histone deacetylase Sir2. One mechanism proposed for this putative activation of Sir2 is that CR enhances the rate of respiration, in turn leading to altered levels of NAD+ or NADH, and ultimately resulting in enhanced Sir2 activity. An alternative mechanism has been proposed in which CR decreases levels of the Sir2 inhibitor nicotinamide through increased expression of the gene coding for nicotinamidase, PNC1. We have previously reported that life span extension by CR is not dependent on Sir2 in the long-lived BY4742 strain background. Here we have determined the requirement for respiration and the effect of nicotinamide levels on life span extension by CR. We find that CR confers robust life span extension in respiratory-deficient cells independent of strain background, and moreover, suppresses the premature mortality associated with loss of mitochondrial DNA in the short-lived PSY316 strain. Addition of nicotinamide to the medium dramatically shortens the life span of wild type cells, due to inhibition of Sir2. However, even in cells lacking both Sir2 and the replication fork block protein Fob1, nicotinamide partially prevents life span extension by CR. These findings (1) demonstrate that respiration is not required for the longevity benefits of CR in yeast, (2) show that nicotinamide inhibits life span extension by CR through a Sir2-independent mechanism, and (3) suggest that CR acts through a conserved, Sir2-independent mechanism in both PSY316 and BY4742.  相似文献   

8.
Sir2 blocks extreme life-span extension   总被引:18,自引:0,他引:18  
Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological life-span extension. Inactivation of Sir2 causes uptake and catabolism of ethanol and upregulation of many stress-resistance and sporulation genes. These changes while sufficient to extend chronological life span in wild-type yeast require severe calorie restriction or additional mutations to extend life span of sir2Delta mutants. Our results demonstrate that effects of SIR2 on chronological life span are opposite to replicatve life span and suggest that the relevant activities of Sir2-like deacetylases may also be complex in higher eukaryotes.  相似文献   

9.
10.
11.
12.
Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.  相似文献   

13.
Recent studies in fruit flies have imposed dietary restriction (DR) by diluting yeast and have reported increased lifespan as the yeast-to-sugar ratio decreased. In this study, the effects of DR on the lifespan of Bactrocera dorsalis were investigated using constant-feeding diets with different yeast:sugar ratios and an intermittent-feeding diet in which flies ate every sixth day. Antioxidant enzyme activities and the malondialdehyde concentration were also measured in virgin females under constant-feeding DR protocols to investigate their relationships with lifespan. The results showed that B. dorsalis lifespan was significantly extended by DR, and carbohydrate-enriched diet may be important for lifespan-extension. Female flies lived significantly longer than males at all dietary levels under both feeding regimes, indicating no interaction between diet and sex in determining lifespan. Antioxidant enzyme activities increased with the amount of yeast increased in the diets (0–4.76%) between starvation and DR treatments, indicating that the antioxidants may have influences in determining lifespan in B. dorsalis under starvation and DR treatments. However, antioxidants cannot keep up with increased oxidative damage induced by the high yeast diet (25%). These results revealed that the extension of lifespan by DR is evolutionarily conserved in B. dorsalis and that yeast:sugar ratios significantly modulate lifespan in this species.  相似文献   

14.
Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Gα subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Δgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.  相似文献   

15.
Calorie restriction is the only life span extending regimen known that applies to all aging organisms. Although most fungi do not appear to senesce, all natural isolates of the modular filamentous fungus Podospora anserina have a limited life span. In this paper, we show that calorie restriction extends life span also in Podospora anserina. The response to glucose limitation varies significantly among 23 natural isolates from a local population in The Netherlands, ranging from no effect up to a 5-fold life span extension. The isolate dependent effect is largely due to the presence or absence of pAL2-1 homologous plasmids. These mitochondrial plasmids are associated with reduced life span under calorie restricted conditions, suggesting a causal link. This has been substantiated using three combinations of isogenic isolates with and without plasmids. A model is proposed to explain how pAL2-1 homologues influence the response to calorie restriction.  相似文献   

16.
The short-lived annual fish Nothobranchius furzeri shows extremely short captive life span and accelerated expression of age markers, making it an interesting model system to investigate the effects of experimental manipulations on longevity and age-related pathologies. Here, we tested the effects of dietary restriction (DR) on mortality and age-related markers in N. furzeri . DR was induced by every other day feeding and the treatment was performed both in an inbred laboratory line and a longer-lived wild-derived line. In the inbred laboratory line, DR reduced age-related risk and prolonged maximum life span. In the wild-derived line, DR induced early mortality, did not reduce general age-related risk and caused a small but significant extension of maximum life span. Analysis of age-dependent mortality revealed that DR reduced demographic rate of aging, but increased baseline mortality in the wild-derived strain. In both inbred- and wild-derived lines, DR prevented the expression of the age markers lipofuscin in the liver and Fluoro-Jade B (neurodegeneration) in the brain. DR also improved performance in a learning test based on conditioning (active avoidance in a shuttle box). Finally, DR induced a paradoxical up-regulation of glial fibrillary acidic protein in the brain.  相似文献   

17.
Dietary restriction (DR) is one of the main experimental paradigms to investigate the mechanisms that determine lifespan and aging. Yet, the exact nutritional parameters responsible for DR remain unclear. Recently, the advent of the geometric framework of nutrition (GF) has refocussed interest from calories to dietary macronutrients. However, GF experiments focus on invertebrates, with the importance of macronutrients in vertebrates still widely debated. This has led to the suggestion of a fundamental difference in the mode of action of DR between vertebrates and invertebrates, questioning the suggestion of an evolutionarily conserved mechanism. The use of dietary dilution rather than restriction in GF studies makes comparison with traditional DR studies difficult. Here, using a novel nonmodel vertebrate system (the stickleback fish, Gasterosteus aculeatus), we test the effect of macronutrient versus calorie intake on key fitness‐related traits, both using the GF and avoiding dietary dilution. We find that the intake of macronutrients rather than calories determines both mortality risk and reproduction. Male mortality risk was lowest on intermediate lipid intakes, and female risk was generally reduced by low protein intakes. The effect of macronutrient intake on reproduction was similar between the sexes, with high protein intakes maximizing reproduction. Our results provide, to our knowledge, the first evidence that macronutrient, not caloric, intake predicts changes in mortality and reproduction in the absence of dietary dilution. This supports the suggestion of evolutionary conservation in the effect of diet on lifespan, but via variation in macronutrient intake rather than calories.  相似文献   

18.
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed. G. A. Oliveira and E. B. Tahara contributed equally to this work.  相似文献   

19.
20.
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号