首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mixed connective tissue disease (MCTD) is a systemic autoimmune disease with significant morbidity and premature mortality of unknown pathogenesis. In the present study, we characterized U1-70-kDa small nuclear ribonucleoprotein (70-kDa) autoantigen-specific T cells in a new murine model of MCTD. These studies defined 70-kDa-reactive T cell Ag fine specificities and TCR gene usage in this model. Similar to patients with MCTD, CD4(+) T cells can be readily identified from 70-kDa/U1-RNA-immunized HLA-DR4-transgenic mice. Using both freshly isolated CD4(+) T cells from spleen and lung, and T cell lines, we found that the majority of these T cells were directed against antigenic peptides residing within the RNA-binding domain of 70 kDa. We also found that TCR-beta (TRB) V usage was highly restricted among 70-kDa-reactive T cells, which selectively used TRBV subgroups 1, 2, 6, 8.1, 8.2, and 8.3, and that the TRB CDR3 had conserved sequence motifs which were shared across different TRBV subgroups. Finally, we found that the TRBV and CDR3 regions used by both murine and human 70-kDa-specific CD4(+) T cells were homologous. Thus, T cell recognition of the 70-kDa autoantigen by HLA-DR4-transgenic mice is focused on a limited number of T cell epitopes residing primarily within the RBD of the molecule, using a restricted number of TRBV and CDR3 motifs that are homologous to T cells isolated from MCTD patients.  相似文献   

2.
Apoptotically modified forms of autoantigens have been hypothesized to participate in lupus immunopathogenesis. This study identifies a major B cell epitope present on the apoptotic but not the intact form of the U1-70-kDa ribonucleoprotein lupus autoantigen (70k). Human autoimmune sera with strong recognition of apoptotic 70k and minimal recognition of intact 70k were identified and tested for reactivity to truncated forms of 70k by immunoblot and ELISA. Patient sera that preferentially recognized apoptotic 70k were specific for an epitope dependent on residues 180-205 of the protein. This epitope was also recognized by 19 of 28 (68%) intact anti-70k-positive autoimmune human sera with Abs also recognizing apoptotic but not the intact form 70k, but only 1 of 9 (11%) intact 70k-positive sera without such Abs (Fisher's exact, p = 0.0055). Immunization of HLA-DR4-transgenic C57BL/6 mice with a peptide containing this epitope induced anti-70k immunity in 13 of 15 mice, including Abs recognizing apoptotic but not intact forms of autoantigens in 12 of 15 mice. Anti-70k responder mice also developed spreading of immunity to epitopes on the endogenous form of 70k, and proliferative lung lesions consistent with those described in patients with anti-70k autoimmunity. Thus, a major epitope in the B cell response to U1-70 kDa localizes to the RNA binding domain of the molecule, overlaps with the most common T cell epitope in the anti-70k response, and is not present on the intact form of the 70k molecule. Immunization of mice against this epitope induces an immune response with features seen in human anti-70k autoimmune disease.  相似文献   

3.
Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are major constituents of the spliceosome. They are composed of approximately 30 different proteins which can bind to nascent pre-mRNA. Among these, the hnRNP-A/B proteins form a subgroup of highly related proteins consisting of two adjacent RNA binding domains (RBD) within the N-terminal parts, whereas the C-terminal halves contain almost 50% glycine residues. These proteins, in particular A2/RA33, are targeted by autoantibodies from patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and mixed connective tissue disease (MCTD). In SLE anti-hnRNP antibodies frequently occur together with antibodies to U1 small nuclear RNP (U1-snRNP) and Sm, other proteins of the spliceosome. Preliminary epitope mapping studies have revealed major antibody binding sites in the RNA binding regions for all three diseases. Nevertheless, there is some indication of disease specific epitope recognition. Studies in animal models have demonstrated anti-RA33/hnRNP-A/B antibodies in lupus-prone mouse strains.Thus, autoantibodies to the spliceosomal hnRNP-A/B proteins are a common feature of RA, SLE, and MCTD. However, these diseases differ in their reactivities to other spliceosomal proteins, especially anti-U1 snRNP and Sm. Therefore, anti-RA33/hnRNP-A/B autoantibodies are not only valuable diagnostic markers but may also allow additional insights into the pathogenesis of rheumatic autoimmune diseases.Abbreviations AS ankylosing spondylitis - hnRNP heterogeneous nuclear ribonucleoprotein - MCTD mixed connective tissue disease - PSA psoriatic arthropathy - RA rheumatoid arthritis - RBD RNA binding domain - SLE systemic lupus erythematosus - snRNP small nuclear ribonucleoprotein  相似文献   

4.
There is increasing evidence that the TCR can have significant plasticity in the range of Ags that a single receptor can recognize. Although it has been proposed that such TCR plasticity might contribute to autoimmunity, there have been few studies examining this possibility in either animal models or human disease. In the present study, we examined human T cell clones that were generated against two structurally dissimilar proteins, U1-70 kDa and Smith-B, that are physically associated in the U1-small nuclear ribonucleoprotein complex and that are frequent targets of autoantibodies and T cells in the same lupus patient. We found that the TCR from all clones isolated had substantial sequence homology within their complementarity-determining region 3. We molecularly cloned and expressed individual TCR/A and TCR/B genes in a TCR-negative human cell line J.RT3-T3.5. We then examined the interaction between the TCR and U1-70 kDa and Smith-B antigenic peptides. We found that there was plasticity or degeneracy of the TCR reactive with these lupus autoantigens in that two structurally dissimilar lupus autoantigenic peptides could stimulate a single TCR. These studies support an important role of plasticity of the TCR in the development of human autoimmunity.  相似文献   

5.
T cells with specificity for self-Ags are normally present in the peripheral blood, and, upon activation, may target tissue Ags and become involved in the pathogenesis of autoimmune processes. In multiple sclerosis, a demyelinating disease of the CNS, it is postulated that inflammatory damage is initiated by CD4+ T cells reactive to myelin Ags. To investigate the potential naive vs memory origin of circulating myelin-reactive cells, we have generated myelin basic protein (MBP)- and tetanus toxoid-specific T cell clones from CD45RA+/RO- and CD45RO+/RA- CD4+ T cell subsets from the peripheral blood of multiple sclerosis patients and controls. Our results show that 1) the response to MBP, different from that to TT, predominantly emerges from the CD45RA+ subset; 2) the reactivity to immunodominant MBP epitopes mostly resides in the CD45RA+ subset; 3) in each individual, the recognition of single MBP epitopes is skewed to either subset, with no overlap in the Ag fine specificity; and 4) in spite of a lower expression of costimulatory and adhesion molecules, CD45RA+ subset-derived clones recognize epitopes with higher functional Ag avidity. These findings point to a central role of the naive CD45RA+ T cell subset as the source for immunodominant, potentially pathogenic effector CD4+ T cell responses in humans.  相似文献   

6.
Tetrameric MHC/peptide complexes are important tools for enumerating, phenotyping, and rapidly cloning Ag-specific T cells. It remains however unclear whether they can reliably distinguish between high and low avidity T cell clones. In this report, tetramers with mutated CD8 binding site selectively stain higher avidity human and murine CTL capable of recognizing physiological levels of Ag. Furthermore, we demonstrate that CD8 binding significantly enhances the avidity as well as the stability of interactions between CTL and cognate tetramers. The use of CD8-null tetramers to identify high avidity CTL provides a tool to compare vaccination strategies for their ability to enhance the frequency of high avidity CTL. Using this technique, we show that DNA priming and vaccinia boosting of HHD A2 transgenic mice fail to selectively expand large numbers of high avidity NY-ESO-1(157-165)-specific CTL, possibly due to the large amounts of antigenic peptide delivered by the vaccinia virus. Furthermore, development of a protocol for rapid identification of high avidity human and murine T cells using tetramers with impaired CD8 binding provides an opportunity not only to monitor expansion of high avidity T cell responses ex vivo, but also to sort high avidity CTL clones for adoptive T cell transfer therapy.  相似文献   

7.
Modifications occurring on autoantigens during cell death have been proposed to have a role in the initiation of autoimmune diseases. Patients suffering from mixed connective tissue disease (MCTD) produce autoantibodies directed to U1 small nuclear ribonucleoprotein (snRNP), and antibodies against a 70 kDa protein component, the U1-70K (70K) protein, are the most prominent. During apoptosis, 70K is cleaved by caspase-3 to a 40 kDa product, which remains associated with the complex. Autoantibodies preferentially recognizing the apoptotic form of 70K have been described previously, and an apoptosis-specific epitope on 70K has been identified. This study shows that 29 of 53 (54%) MCTD sera preferentially recognize the apoptotic form of 70K over intact 70K. Moreover, we show that antibodies directed to an apoptosis-specific epitope on 70K are more specifically associated with MCTD than other anti-70K antibodies, suggesting that apoptotic 70K is a better antigen for the detection of these antibodies in MCTD patients. Longitudinal analysis of 12 MCTD patients showed in several patients that early sera are relatively enriched with antibodies recognizing an apoptosis-specific epitope, and that the levels of these apoptosis-specific antibodies decrease in time. These findings indicate that the early detection of apoptotic 70K is of considerable interest for anti-U1 snRNP-positive patients.  相似文献   

8.
Heteroclitic peptides are used to enhance the immunogenicity of tumor-associated Ags to break T cell tolerance to these self-proteins. One such altered peptide ligand (Cap1-6D) has been derived from an epitope in human carcinoembryonic Ag, CEA(605-613) (Cap1). Clinical responses have been seen in colon cancer patients receiving a tumor vaccine comprised of this altered peptide. Whether Cap1-6D serves as a T cell agonist for Cap1-specific T cells or induces different T cells is unknown. We, therefore, examined the T cell repertoires elicited by Cap1-6D and Cap1. Human CTL lines and clones were generated with either Cap1-6D peptide (6D-CTLs) or Cap1 peptide (Cap1-CTLs). The TCR Vbeta usage and functional avidity of the T cells induced in parallel against these target peptides were assessed. The predominant CTL repertoire induced by agonist Cap1-6D is limited to TCR Vbeta1-J2 with homogenous CDR3 lengths. In contrast, the majority of Cap1-CTLs use different Vbeta1 genes and also had diverse CDR3 lengths. 6D-CTLs produce IFN-gamma in response to Cap1-6D peptide with high avidity, but respond with lower avidity to the native Cap1 peptide when compared with the Cap1-CTLs. Nevertheless, 6D-CTLs could still lyse targets bearing the native epitope. Consistent with these functional results, 6D-CTLs possess TCRs that bind Cap-1 peptide/MHC tetramer with higher intensity than Cap1-CTLs but form less stable interactions with peptide/MHC as measured by tetramer decay. These results demonstrate that priming with this CEA-derived altered peptide ligand can induce distinct carcinoembryonic Ag-reactive T cells with different functional capacities.  相似文献   

9.
The yeast U1A protein is a U1 snRNP-specific protein. Like its human counterpart (hU1A), it has two conserved RNA binding domains (RBDs). The N-terminal RBD is quite different from the human protein, and a binding site on yeast U1 snRNA is not readily apparent. The C-terminal RBD is of unknown function. Using in vivo dimethyl sulfate (DMS) protection of mutant strains, we defined a region in yeast U1 snRNA as the likely U1A N-terminal RBD binding site. This was confirmed by direct in vitro binding assays. The site is very different from its vertebrate counterpart, but its location within yeast U1 snRNA suggests a conserved structural relationship to other U1 snRNP components. Genetic studies and sensitive in vivo splicing measurements indicate that the yeast U1A C-terminal RBD also functions in pre-mRNA splicing. We propose that the N-terminal RBD serves to tether the splicing-relevant C-terminal RBD to the snRNP.  相似文献   

10.
《MABS-AUSTIN》2013,5(3):461-469
Bispecific antibodies constitute a valuable class of therapeutics owing to their ability to bind 2 distinct targets. Dual targeting is thought to enhance biological efficacy, limit escape mechanisms, and increase target selectivity via a strong avidity effect mediated by concurrent binding to both antigens on the surface of the same cell. However, factors that regulate the extent of target selectivity are not well understood. We show that dual targeting alone is not sufficient to promote efficient target selectivity, and report the substantial roles played by the affinity of the individual arms, overall avidity and valence. More particularly, various monovalent bispecific IgGs composed of an anti-CD70 moiety paired with variants of the anti-CD4 mAb ibalizumab were tested for preferential binding and selective depletion of CD4+/CD70+ T cells over cells expressing only one of the target antigens that resulted from antibody dependent cell-mediated cytotoxicity. Variants exhibiting reduced CD4 affinity showed a greater degree of target selectivity, while the overall efficacy of the bispecific molecule was not affected.  相似文献   

11.
J P Quinn  A R Farina 《FEBS letters》1991,286(1-2):225-228
During purification of the AP1 complex from the T cell line MLA144 we enriched for a complex which bound to an oligonucleotide column containing the AP1 DNA consensus sequence and co-eluted with a fraction required for AP1 binding activity. This complex although co-eluting with AP1 binding activity had previously been determined to be non-specific in its DNA binding properties. Further investigation determined that the complex was a heterodimer of 85 and 70 kDa which was antigenically related to the autoimmune antigen Ku. It is important to be aware of the abundance and avidity of the Ku complex to bind oligonucleotide columns when purifying sequence specific binding proteins.  相似文献   

12.
Interleukin-2 (IL-2) is a requisite factor for growth and proliferation of IL-2-dependent T cells. At present, the mechanism by which the high-affinity IL-2-IL-2 receptor interaction transmits a mitogenic signal to the cellular interior remains unclear. In this report we have used three murine T cell clones to demonstrate that IL-2 stimulates rapid tyrosine phosphorylation of several proteins. Two of these clones, CTLL-2 and CT6, exhibit a cytotoxic T cell phenotype, while the third, HT-2, was derived from a helper T cell line. All three T cell clones proliferated in response to IL-2 stimulation, but HT-2 cells also proliferated in response to interleukin-4 (IL-4). We comparatively examined the effects of IL-2 and IL-4 on protein tyrosine phosphorylation in these cells by immunoaffinity purification of phosphotyrosyl substrates with an anti-phosphotyrosine monoclonal antibody. Stimulation with concentrations of IL-2 resulting in maximal (10-30 U/ml) or sub-maximal (1-5 U/ml) proliferation caused the rapid tyrosine phosphorylation of 97 and 57 kDa proteins in all three cell lines. The 97 kDa protein was localized in the cytosol, while the 57 kDa protein was detected in both cytosolic and crude membrane fractions. IL-2-dependent tyrosine phosphorylation of an 86 kDa cytosolic protein was observed only in CT6 cells. Tyrosine phosphorylation of 22, 23 and 200 kDa proteins was also observed, but only in the cytotoxic T cell clones. Phosphoamino acid analyses revealed that the 97, 86 and 57 kDa proteins contained phosphotyrosine and phosphoserine residues. Concentrations of IL-2 below the threshold concentration for induction of a proliferative response correspondingly failed to stimulate protein tyrosine phosphorylation. In contrast, growth stimulation of HT-2 cells by IL-4 was not preceded by early changes in protein tyrosine phosphorylation, suggesting that protein tyrosine phosphorylation may not be essential for the induction of IL-4-dependent cell-cycle progression. These results demonstrate that high-affinity IL-2 receptors are coupled to tyrosine kinase activity(s) in T cells. However, the failure of IL-4 to stimulate protein tyrosine phosphorylation in the same cells indicates that enhanced protein tyrosine phosphorylation may not be requisite for growth factor-dependent T cell proliferation.  相似文献   

13.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

14.
The N-terminal RNA binding domain (RBD) of the human U1A snRNP protein binds tightly and specifically to an RNA hairpin that contains a 10-nucleotide loop. The protein is one of a class of RNA binding proteins that adopts a beta alpha beta beta alpha beta global fold, which in turn forms a four-stranded antiparallel beta-sheet. This sheet forms the primary binding surface for the RNA, as shown by the crosslinking results described here, and in more detail by a recently described co-crystal of this RBD with an RNA hairpin (Oubridge C, et al., 1994, Nature 372:432-438). The RNA hairpin sequence used in the crosslinking experiments, containing 5-iodo-uridine, is a variant of the normal U1 snRNA sequence which is able to form a crosslink with the protein, in contrast to the wild-type sequence, which does not. This single uridine substitution in the 10-nucleotide loop is the site of cross-linking to one tyrosine (Tyr 13) in the beta 1 strand of the U1A N-terminal RBD. This same uridine is also crosslinked to a mutant Tyr 13 Phe RBD, at this Phe 13 substitution.  相似文献   

15.
Cell-based antitumor immunity is driven by CD8(+) cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27-35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. alpha and beta TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018-0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an "off-the-shelf" reagent for allogeneic melanoma patient gene therapy.  相似文献   

16.
T cells recognizing tumor-associated Ags such as Wilms tumor protein (WT1) are thought to exert potent antitumor reactivity. However, no consistent high-avidity T cell responses have been demonstrated in vaccination studies with WT1 as target in cancer immunotherapy. The aim of this study was to investigate the possible role of negative thymic selection on the avidity and specificity of T cells directed against self-antigens. T cell clones directed against the HLA-A*0201-binding WT1(126-134) peptide were generated from both HLA-A*02-positive (self-HLA-restricted) and HLA-A*02-negative [nonself (allogeneic) HLA [allo-HLA]-restricted] individuals by direct ex vivo isolation using tetramers or after in vitro priming and selection. The functional avidity and specificity of these T cell clones was analyzed in-depth. Self-HLA-restricted WT1-specific clones only recognized WT1(126-134) with low avidities. In contrast, allo-HLA-restricted WT1 clones exhibited profound functional reactivity against a multitude of HLA-A*02-positive targets, even in the absence of exogenously loaded WT1 peptide, indicative of Ag-binding promiscuity. To characterize this potential promiscuity, reactivity of the T cell clones against 400 randomly selected HLA-A*0201-binding peptides was investigated. The self-HLA-restricted WT1-specific T cell clones only recognized the WT1 peptide. In contrast, the allo-HLA-restricted WT1-reactive clones recognized besides WT1 various other HLA-A*0201-binding peptides. In conclusion, allogeneic HLA-A*02-restricted WT1-specific T cells isolated from mismatched donors may be more tumor-reactive than their autologous counterparts but can show specific off-target promiscuity of potential clinical importance. As a result of this, administration of WT1-specific T cells generated from HLA-mismatched donors should be performed with appropriate precautions against potential off-target effects.  相似文献   

17.
High titer IgG autoantibodies to the 70-kDa polypeptide component (p70) of the U1 ribonucleoprotein (RNP) complex occur in the sera of patients with mixed connective tissue disease, SLE, and related rheumatic diseases. To gain insight into the pathogenesis and diversity of this antibody response we have used recombinant DNA technology to map the linear B cell epitopes on p70. A full length 1.7-kb cDNA clone encoding p70 was isolated from a human placental library and restriction fragments or polymerase chain reaction-generated fragments of the gene subcloned into the bacterial expression vector pGEX. Purified fusion proteins representing specific regions of p70 were immunoblotted with a panel of 70 anti-(U1)RNP+ sera containing anti-p70 antibodies. Six epitopes, four major (A, B, C, and F) and two minor (D and E) were mapped and were located throughout the molecule. The anti-(U1)RNP sera displayed heterogeneity in their pattern of reactivity to the six epitopes although reactivity to epitope C was more frequently associated with SLE rather than mixed connective tissue disease. The identification of multiple B cell epitopes on p70 is consistent with the concept that this self Ag drives the autoantibody response.  相似文献   

18.
Autoimmunity often spreads in a predefined pattern during the progression of T cell-mediated autoimmune diseases. This progression has been well described in animal models and in man, but the basis for this phenomenon is little understood. To gain insight into the factors that determine this spreading hierarchy, we characterized the binding affinity of a panel of beta cell-autoantigenic peptides to I-Ag7, as well as the precursor frequency, functional avidity, and phenotype of the T cells that recognize these peptides in type 1 diabetes-prone nonobese diabetic mice. We observed that autoimmunity gradually spreads from a beta cell determinant, which had the largest precursor pool of high avidity T cells, to beta cell determinants with progressively smaller and lower avidity T cell precursor pools. This correlation between the sequential development of spontaneous T cell autoimmunity and the frequency and avidity of autoantigen-reactive T cells suggests that the extent to which T cells were negatively selected by the self-determinants is the key factor determining the spreading hierarchy.  相似文献   

19.
Defining the role of T-cell avidity and killing efficacy in forming immunological response(s), leading to relapse-remission and autoantibody release in autoimmune type 1 diabetes (T1D), remains incompletely understood. Using competition-based population models of T- and B-cells, we provide a predictive tool to determine how these two parametric quantities, namely, avidity and killing efficacy, affect disease outcomes. We show that, in the presence of T-cell competition, successive waves along with cyclic fluctuations in the number of T-cells are exhibited by the model, with the former induced by transient bistability and the latter by transient periodic orbits. We hypothesize that these two immunological processes are responsible for making T1D a relapsing-remitting disease within prolonged but limited durations. The period and the number of peaks of these two processes differ, making them potential candidates to determine how plausible waves and cyclic fluctuations are in producing such effects. By assuming that T-cell and B-cell avidities are correlated, we demonstrate that autoantibodies associated with the higher avidity T-cell clones are first to be detected, and they reach their detectability level faster than those associated with the low avidity clones, independent of what T-cell killing efficacies are. Such outcomes are consistent with experimental observations in humans and they provide a rationale for observing rapid and slow progressors of T1D in high risk subjects. Our analysis of the models also reveals that it is possible to improve disease outcomes by unexpectedly increasing the avidity of certain subclones of T-cells. The decline in the number of -cells in these cases still occurs, but it terminates early, leaving sufficient number of functioning -cells in operation and the affected individual asymptomatic. These results indicate that the models presented here are of clinical relevance because of their potential use in developing predictive algorithms of rapid and slow progression to clinical T1D.  相似文献   

20.
In a murine model of T cell-mediated autoimmune disease, experimental autoimmune encephalitis (EAE), 80% of all encephalitogenic T cell clones in H-2u mice use the V beta 8.2 TCR element. To induce EAE in susceptible strains of mice either heat-killed Bordetella pertussis organisms or Bordetella pertussis toxin (PT) must be injected in addition to Ag in CFA. We investigated the mechanisms by which PT facilitates the induction of EAE. Our data show, that PT interferes with the induction of Ag-induced peripheral T cell anergy. Furthermore it has a specific adjuvanticity for the autoantigen pAc1-11 in vivo and acts as a selective mitogen in vitro. We also tested the hypothesis that PT is a bacterial superantigen that specifically expands the V beta 8.2+ subset of T cells, thereby expanding the encephalitogenic T cell clones that are contained in this subset, so that the number of autoreactive T cells is brought over a critical threshold, necessary to induce autoimmune disease. Our data show that PT is not a superantigen. Staphylococcal enterotoxin B, a V beta 8.2-specific superantigen, does not enhance the immune response to the encephalitogenic peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号