首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Faithful replication of the mitochondrial genome is carried out by a set of key nuclear-encoded proteins. DNA polymerase γ is a core component of the mtDNA replisome and the only replicative DNA polymerase localized to mitochondria. The asynchronous mechanism of mtDNA replication predicts that the replication machinery encounters dsDNA and unique physical barriers such as structured genes, G-quadruplexes, and other obstacles. In vitro experiments here provide evidence that the polymerase γ heterotrimer is well-adapted to efficiently synthesize DNA, despite the presence of many naturally occurring roadblocks. However, we identified a specific G-quadruplex–forming sequence at the heavy-strand promoter (HSP1) that has the potential to cause significant stalling of mtDNA replication. Furthermore, this structured region of DNA corresponds to the break site for a large (3,895 bp) deletion observed in mitochondrial disease patients. The presence of this deletion in humans correlates with UV exposure, and we have found that efficiency of polymerase γ DNA synthesis is reduced after this quadruplex is exposed to UV in vitro.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Mitochondrial DNA (mtDNA) is different in many ways from nuclear DNA. A key difference is that certain types of DNA damage are not repaired in the mitochondrial genome. What, then, is the fate of such damage? What are the effects? Both questions are important from a health perspective because irreparable mtDNA damage is caused by many common environmental stressors including ultraviolet C radiation (UVC). We found that UVC-induced mtDNA damage is removed slowly in the nematode Caenorhabditis elegans via a mechanism dependent on mitochondrial fusion, fission, and autophagy. However, knockdown or knockout of genes involved in these processes—many of which have homologs involved in human mitochondrial diseases—had very different effects on the organismal response to UVC. Reduced mitochondrial fission and autophagy caused no or small effects, while reduced mitochondrial fusion had dramatic effects.  相似文献   

13.
14.
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the “other” genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease.  相似文献   

15.
16.
Because two conflicting reports of the structure of the Meloidogyne hapla mitochondrial genome exist, we compared the mitochondrial DNA (mtDNA) purified from two isolates of M. hapla: one from San Bernardino County in southern California (BRDO) and the other from England. The authenticity of the BRDO isolate in particular was confirmed by examination of morphological characters, isoenzyme analysis, and differential host range tests. Restriction analysis revealed that mtDNA from the BRDO and English isolates corresponded to only the structure first reported, although significant differences between the two isolates were apparent. Southern blots probed with cloned, cytochrome oxidase I (cox-l) DNA from Romanomermis culicivorax mtDNA confirmed that the analyzed DNA was of mitochondrial origin. Thus, M. hapla has at least two distinct but presumably related mitchondrial genomes, plus at least one very different structure. These data are discussed with reference to recent molecular diagnostic and phylogenetic analyses of Meloidogyne.  相似文献   

17.
Mitochondria are key regulators of cellular energy and are the focus of a large number of studies examining the regulation of mitochondrial dynamics and biogenesis in healthy and diseased conditions. One approach to monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication. We developed a sensitive technique to visualize newly synthesized mtDNA in individual cells to study mtDNA replication within subcellular compartments of neurons. The technique combines the incorporation of 5-bromo-2-deoxyuridine (BrdU) and/or 5-ethynyl-2′-deoxyuridine (EdU) into mtDNA, together with a tyramide signal amplification protocol. Employing this technique, we visualized and measured mtDNA biogenesis in individual cells. The labeling procedure for EdU allows for more comprehensive results by allowing the comparison of its incorporation with other intracellular markers, because it does not require the harsh acid or enzyme digests necessary to recover the BrdU epitope. In addition, the utilization of both BrdU and EdU permits sequential pulse–chase experiments to follow the intracellular localization of mtDNA replication. The ability to quantify mitochondrial biogenesis provides an essential tool for investigating the alterations in mitochondrial dynamics involved in the pathogenesis of multiple cellular disorders, including neuropathies and neurodegenerative diseases. (J Histochem Cytochem 58:207–218, 2010)  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号