首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in dissociated bovine parathyroid cells using the fluorescent indicator quin-2 or fura-2. Small increases in the concentration of extracellular Ca2+ produced relatively slow, monophasic increases in [Ca2+]i in quin-2-loaded cells, but rapid and transient increases followed by lower, yet sustained (steady-state), [Ca2+]i increases in fura-2-loaded cells. The different patterns of change in [Ca2+]i reported by quin-2 and fura-2 appear to result from the greater intracellular Ca2+-buffering capacity present within quin-2-loaded cells, which tends to damp rapid and transient changes in [Ca2+]i. In fura-2-loaded parathyroid cells, other divalent cations (Mg2+, Sr2+, Ba2+) also evoked transient increases in [Ca2+]i, and their competitive interactions suggest that they all affect Ca2+ transients by acting on a common site. In contrast, divalent cations failed to cause increases in steady-state levels of cytosolic Ca2+. Low concentrations of La3+ (0.5-10 microM) depressed steady-state levels of cytosolic Ca2+ elicited by extracellular Ca2+ but were without effect on transient increases in [Ca2+]i elicited by extracellular Ca2+, Mg2+ or Sr2+, suggesting that increases in the steady-state [Ca2+]i arise from the influx of extracellular Ca2+. Mg2+- and Sr2+-induced cytosolic Ca2+ transients persisted in the absence of extracellular Ca2+ but were abolished by pretreatment with ionomycin. These results show that cytosolic Ca2+ transients arise from the mobilization of cellular Ca2+ from a nonmitochondrial pool. Extracellular divalent cations thus appear to act at some site on the surface of the cell, and this site can be considered a "Ca2+ receptor" which enables the parathyroid cell to detect small changes in the concentration of extracellular Ca2+.  相似文献   

2.
We have directly compared the signals required for: induction of the [Ca+2]i response, expression of Tac antigen, and proliferation in antigen-specific human T cell clones. We have previously shown that antigen-specific activation of cloned T cells under conditions leading to proliferation is accompanied by a rapid increase in [Ca+2]i. Cloned T cells showed increased [Ca+2]i, enhanced Tac expression, and proliferated in response to specific antigen in the presence of viable, genetically appropriate antigen-presenting cells. Paraformaldehyde fixation of antigen-presenting cells after "pulsing" with antigen prevented proliferation, but did not affect MHC-restricted [Ca+2]i or Tac responses. Treatment of cloned T cells with monoclonal anti-T3 antibody also increased [Ca+2]i and Tac expression but did not induce proliferation. Proliferation was restored by viable autologous or allogenic APC or exogenous IL 2, but not by IL 1. In contrast to resting T cells, T cell clones were insensitive to the mitogenic effects of lectins or of ionophores and phorbol esters. These results suggest that activation of antigen-specific T cells requires the sequential action of at least two signals. The first is MHC restricted and is mediated by interaction of antigen + MHC class II products with the T cell receptor (T3-Ti) complex. This leads to Tac expression and increased [Ca+2]i, but is not sufficient for proliferation. This signal can be bypassed by anti-T3 monoclonal antibodies. Proliferation requires a second, nonantigen-specific, non-MHC-restricted antigen-presenting cell signal, which cannot be replaced by IL 1 in our system. This signal can be bypassed, however, by the addition of exogenous IL 2 to cells that have received the first signal and express Tac, suggesting that it is required for IL 2 synthesis and secretion. T cell clones therefore provide a useful model for studying antigen-dependent and -independent events in cell activation.  相似文献   

3.
The presynaptic Ca2+ concentration ([Ca]i) was evaluated by studying intracellular free Ca2+ with quin-2 and fura-2 in synaptosomal preparations. The synaptosomal preparations were purified with hyperosmotic (sucrose) and isoosmotic (Percoll) density gradient centrifugation. Synaptosomes are most viable in the heavier fractions of the density gradients. These synaptosomal fractions exhibit the lowest [Ca]i, [204 +/- 2 nM for Percoll (C-band) synaptosomes, loaded at 30 degrees C with the acetoxymethyl ester of fura-2 (fura-2-AM)], a high stability during prolonged incubations at 37 degrees C, and a more potent response to membrane depolarization by elevated extracellular [K+]. [Ca]i measurement was critically dependent on dye loading, calibration, type of dye used, synaptosomal preparation, and incubation temperature (30 degrees or 37 degrees C). Loading quin-2 in synaptosomes inserts a considerable buffer component in the synaptosomal [Ca]i regulation, and consequently there is a quin-2 dependency of [Ca]i, independent of endogenous heavy metal ions. Use of fura-2 is preferable in synaptosomes, although above a critical fura-2-AM/protein ratio during loading ester hydrolysis is not complete, giving rise to errors in [Ca]i determination. Ionomycin is a selective tool to detect the presence of partially hydrolyzed esters and saturate indicators in the cytosol with Ca2+ for calibration. Parallel studies on lactate dehydrogenase and fura-2 fluorescence indicate that synaptosomal viability is very sensitive to prolonged incubations at 37 degrees C. This study shows the applicability of measuring steady-state [Ca]i and dynamic [Ca]i changes quantitatively in fura-2-loaded synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We investigated the role of the L3T4 molecule in mitogen and antigen-initiated signal transduction in the L3T4(+) murine T cell hybridoma, 3DT52.5.9 and an L3T4(-) variant, 3DT52.5.24. Both Concanavalin A (Con A) and specific antigen stimulated increases in cytosolic-free calcium ([Ca2+]i), phosphatidylinositol turnover, and interleukin-2 (IL-2) production in both cell lines. About 85% of the stimulated rise in [Ca2+]i was from an extracellular source. Anti-L3T4 monoclonal antibody (MAb) inhibited 90% of antigen- and 50% of Con A-stimulated increases in [Ca2+]i and IL-2 production but had no effect on the ability of either activation signal to stimulate phosphatidylinositol turnover in the parent L3T4(+) cells. Stimulus-response coupling in the L3T4(-) cells was unaffected by the MAb. The anti-L3T4-insensitive increase in [Ca2+]i induced by Con A was inhibited by EGTA, suggesting that this mitogen also stimulated an influx of Ca2+ via an additional transport mechanism distinct from that stimulated by antigen. The fact that anti-L3T4 antibodies inhibit antigen and Con A-stimulated Ca2+ transport and IL-2 production without affecting phosphatidylinositol turnover suggests that L3T4 may play a critical role in modulating the activation of the T cell receptor-associated Ca2+ transporter in T cell stimulus-response coupling.  相似文献   

5.
Loading isolated rat hepatocytes with high concentrations of the fluorescent Ca2+-chelator quin-2 in the absence of extracellular Ca2+ decreases by about 3-fold the cytosolic Ca2+ concentration ([Ca2+]i). In these low [Ca2+]i cells, the initial 45Ca2+ uptake rate, assumed to represent the Ca2+ influx, is stimulated to a level close to that promoted by maximal doses of vasopressin and angiotensin II in control cells. The subsequent addition of Ca2+ to the quin-2-loaded hepatocytes results in a rapid increase in [Ca2+]i and a return of Ca2+ influx towards the basal level usually observed in nonloaded cells. This indicates that the Ca2+ influx is dependent on [Ca2+]i but not on the quin-2 load itself. In the low [Ca2+]i cells, both the apparent Km and the apparent Vmax of the Ca2+ influx are increased as compared to the controls, indicating that the properties of the channels activated by lowering [Ca2+]i are apparently identical to those initiated by the hormones (Mauger, J.-P., Poggioli, J., Guesdon, F., and Claret, M. (1984) Biochem. J. 221, 121-127). It is proposed that in the isolated rat hepatocytes there is an inverse relationship between the Ca2+ influx and [Ca2+]i. Under resting conditions, [Ca2+]i might be high enough to partially inhibit the Ca2+ influx via a Ca2+ binding to an inhibitory site presumably located at the inner membrane surface. The role of the site in the hormonal action is discussed.  相似文献   

6.
The dependency of normal cell proliferation on adequate extracellular Ca2+ levels was further investigated by determining the role of Ca2+ influx in epidermal growth factor (EGF)-induced rat liver epithelial (T51B) cell DNA synthesis. Fura-2-loaded T51B cells responded with an increase in [Ca2+]i to EGF (5-50 ng/ml) that was blocked by low (25 microM) extracellular Ca2+ or by pretreatment with 50 microM La3+ to inhibit plasma membrane Ca2+ flux. Confluent T51B cells treated for 24 h with EGF (0.1-50 ng/ml) dose-dependently incorporated [3H]-thymidine into cell nuclei. Low extracellular Ca2+ or addition of La3+ prevented the EGF-stimulated rise in labeled nuclei, indicating that a movement of Ca2+ into the cell was required for DNA synthesis. This was supported by our findings that bradykinin, which induced a rise in [Ca2+]i by opening plasma membrane Ca2+ channels in T51B cells (but not A23187, thrombin or ATP, which raise [Ca2+]i primary through mobilization of intracellular Ca2+ stores), potentiated DNA synthesis stimulated by submaximal doses of EGF. Potentiation of the action of EGF by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA), indicates that activation of protein kinase C and an influx of Ca2+ share a common mechanism for initiating DNA synthesis.  相似文献   

7.
To investigate the initial stages of recognition of the self idiotype (Id) by T cells, we examined the early increase in cytoplasmic free calcium ([Ca2+]i) occurring in murine CD4+ T cells specific for a model Id, Id315, following their interaction with the Id. The changes in [Ca2+]i were monitored with stopped-flow fluorometry by loading T cells with fura 2, a Ca(2+)-binding fluorescent dye. An increase of [Ca2+]i in the Id-specific T cell line was dependent on the presence of both antigen-presenting cells (APC) and Id315. When T cells were mixed with APC pulsed with M315 for 90 min at 37 C, a significant increase in T cell [Ca2+]i was observed within one second. A pronounced elevation in [Ca2+]i was also observed in T cells after their interaction with APC which had been pulsed for 90 min with VL-315 Id-containing proteins (such as VL-315, L315, Fv-315 or Fab'-315 fragments). In contrast, pulsing APC for 5 min with the VL fragment produced little or no change in the [Ca2+]i. These results suggest that VL must be further processed by APC before it can be recognized by T cells. Indeed, a synthetic VL region peptide (positions 91-108, designated as P18) produced an elevation in T cell [Ca2+]i when mixed with APC without pulsing.  相似文献   

8.
CD5 antibodies increase intracellular ionized calcium concentration in T cells   总被引:11,自引:0,他引:11  
The binding of a variety of monoclonal antibodies to the CD5 (T, gp67) pan T cell differentiation antigen has been shown to potentiate T cell proliferation. In this paper we show that CD5 monoclonal antibodies cause increased intracellular free calcium concentration ([Ca2+]i) in T cells. An increase in [Ca2+]i occurred within 1 min in indo-1-loaded PBMC after the addition of CD5 monoclonal antibodies and cross-linking with a second step anti-mouse kappa light chain antibody. Cross-linking of CD5 was effective when done directly on the cell surface or by the administration of preformed soluble complexes that contained CD5 antibodies. Calcium mobilization induced by suboptimal concentrations of CD3 antibodies was specifically augmented and sustained by CD5 antibodies, although the enhancement was modest in magnitude. When cell surface phenotype was correlated with calcium mobilization, it was found that the CD5 response was restricted to CD5+/CD3+ cells, and that approximately 90% of CD5+ cells had responded. CD5-induced calcium mobilization was found to differ from CD3 stimulation in that EGTA entirely ablated the CD5 response, whereas the CD3 response was resistant to EGTA, indicating that the CD5-induced increased [Ca2+]i is derived primarily or entirely from extracellular calcium. CD5-stimulated calcium mobilization also differed from CD3 in that the CD5 response was inhibited by pretreatment with phorbol myristate acetate, whereas the CD3 response was not, suggesting that depletion of protein kinase C causes an uncoupling of signal transduction between CD5 and calcium channels. Finally, experiments were done with T cells after antigenic modulation of the CD3 or CD5 molecules. Unexpectedly, both the CD5 and the CD3 responses were ablated on CD3-modulated cells, whereas only the CD5 response was ablated on CD5-modulated cells. In addition, several Cd5+/CD3- T cell leukemia lines also failed to respond to CD5 stimulation, providing further evidence which indicates that the CD5 response depends on the cell surface expression of CD3 or a CD3-associated structure. These findings suggest that one mechanism for CD5-induced augmentation of mitogen-stimulated T cell proliferation involves increased [Ca2+]i which is distinct from but interdependent with that induced by stimulation of the CD3 molecule.  相似文献   

9.
The monoclonal antibodies against the T3 complex on human T lymphocytes, anti-Leu-4, OKT3, and T3, induced an accumulation of inositol phosphates in a human T cell leukemia line, JURKAT, in the presence of LiCl. The monoclonal antibodies also induced an increase in the cytosolic free Ca2+-concentration ([Ca2+]i) in JURKAT. The accumulation of inositol phosphates and the increase in [Ca2+]i were specifically induced by the monoclonal antibodies against the T3 complex. Other monoclonal antibodies against differentiation antigens on human T lymphocytes were not active in inducing these responses in JURKAT. Stimulation of JURKAT by anti-Leu-4 induced a rapid and immediate decrease in phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and an increase in the 32P-labeling of phosphatidic acid, which occurred after a short lag period. An analysis of inositol phosphates formed in the anti-Leu-4-stimulated JURKAT indicated the formation of inositol trisphosphate. These results strongly suggested that the T3 complex or T3/antigen receptor (Ti) complex functions as a receptor which transduces antigen signal, presented by either antigen-presenting cells or target cells, into the hydrolysis of PtdIns(4,5)P2. Fetal bovine serum at a dose of 1-20 microliters/ml induced a marked and transient [Ca2+]i increase in JURKAT immediately after addition. However, the level of formation of inositol phosphates was very small in cells stimulated by fetal bovine serum. Fetal bovine serum induced an immediate increase in the 32P-labeling of phosphatidic acid in JURKAT. These and other results suggested that serum increased [Ca2+]i in JURKAT by a mechanism different from that for the anti-Leu-4-induced [Ca2+]i response.  相似文献   

10.
The intracellularly trappable fluorescent Ca2+ indicator quin-2 was used to measure free cytosolic Ca2+, [Ca2+]i, in the two highly dedifferentiated tumor cell lines, Ehrlich and Yoshida ascites carcinomas. It was found that these carcinoma cells can trap quin-2 similarly to normal cells, but [Ca2+]i was apparently significantly lower than in any normal cell tested previously with this method. By using a new lipid-soluble heavy metal chelator TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), which crosses artificial and natural membranes, it was found that endogenous heavy metals are responsible for partially quenching quin-2 fluorescence trapped inside the cells. Although the quenching of intracellular quin-2 fluorescence is quantitatively more relevant in these ascites carcinomas, TPEN was effective also in normal cells like lymphocytes and granulocytes. Both in the normal and especially in the malignant cell lines [Ca2+]i can be grossly underestimated at low intracellular quin-2 concentrations. Endogenous heavy metal quenching is thus a potential source of artifact when [Ca2+]i is measured with quin-2. When corrected for quin-2 fluorescence quenching by intracellular heavy metals, [Ca2+]i and basic regulatory mechanisms of [Ca2+]i homeostasis in Ehrlich and Yoshida carcinomas are similar to those of nontransformed cells.  相似文献   

11.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

12.
We have reported on the effect of heat in C127 cells having various basal levels of the Ca(2+)-binding proteins calmodulin (CaM) or parvalbumin [Evans, Simonette, Rasmussen, Means, and Tomasovic, J. Cell. Physiol. 142, 615-627 (1990)]. These studies suggested that induction of the synthesis of 26-kDa heat-shock protein (hsp-26) depended on increased intracellular free Ca2+ [Ca2+]i and that induction was abrogated by increased Ca(2+)-binding capacity. To evaluate further the role of [Ca2+]i in mediating the response to hyperthermia and the potential for Ca(2+)-buffering to affect these processes, we loaded C127 parental cells with the Ca2+ chelators BAPTA or quin-2 (5 microM for 60 min) and then immediately heated the cells (30 min at 43 degrees C) and labeled them (3 h at 37 degrees C) with [3H]leucine. Measurements of [Ca2+]i with quin-2 and fura-2 showed that an increase in [Ca2+]i occurred with this heat dose, but that the quin-2 buffered that increase. Two-dimensional gels showed that cells loaded with BAPTA and quin-2 had a reduced rate of synthesis of the most basic (nonphosphorylated) hsp-26a isoform. The apparent synthesis of the more acidic isoforms (hsp-26b, hsp-26c) was less affected, but labeling studies with 32P showed this reflected continued accumulation of these phosphorylated isoforms, especially the most highly phosphorylated hsp-26c. Although it reduced hsp-26a synthesis, the temporary buffering of [Ca2+]i did not alter the subsequent expression of heat killing or the extent of thermotolerance significantly, possibly because phosphorylated hsp-26 was still generated. These data support the hypothesis that perturbations of [Ca2+]i directly modulate induction of hsp-26a synthesis.  相似文献   

13.
When SK-N-SH human neuroblastoma cells were exposed to nicotine (NIC) or KCl they showed a dose-dependent transient increase (2- to 4-fold) in intracellular Ca2+ concentration ([Ca2+])i as detected by quin-2 fluorescence, with half maximal effects (EC50) observed at 13 microM and 26 mM, respectively. Tubocurarine and 1-isodihydrohistrionicotoxin potently blocked the NIC-evoked (IC50 congruent to 1 microM and 0.3 microM, respectively), but not the high [K+]o-evoked [Ca2+]i accumulation. The KCl-induced response was inhibited by verapamil and diltiazem (IC50 = 1.4 and 10.9 microM, respectively). Tetrodotoxin (3 microM) and tetraethylammonium (10 microM) had no effect on [Ca2+]i accumulation induced by either agent. Increases in [Ca2+]i could be evoked sequentially by NIC and KCl in the same cells suggesting independent mechanisms of Ca2+ entry. In a Ca2+-free medium, no response to either KCl or NIC was observed. However, when Ca2+ ions were restored, [Ca2+]i accumulation was enhanced to the same extent as cells suspended in a Ca2+-containing buffer. Long-term (18 hr) pretreatment of SK-N-SH cells with pertussis (100 ng/ml) or cholera toxins (10 nM) had no effect on NIC or KCl-induced [Ca2+]i accumulation. Together, these data demonstrate the presence of NIC receptors and voltage-sensitive Ca2+ channels on SK-N-SH neuroblastoma cells, through which [Ca2+]i may be modulated.  相似文献   

14.
Isolated pancreatic acini were loaded with the calcium selective fluorescent indicator, quin-2. Measurements of cellular K+ content and lactic dehydrogenase release indicated that cell viability was not affected by quin-2 loading. The concentration of intracellular free calcium of unstimulated acinar cells was calculated to be 180 +/- 4 nM. When cells suspended in media containing millimolar calcium were exposed to the secretagogues carbachol and cholecystokinin a rapid increase in [Ca2+]i occurred. Both the amplitude and rate of rise of the concentration increase were dose dependent with [Ca2+]i reaching a maximum of 860 +/- 41 nM. The dose-response relationship coincides with the known concentration dependence of the stimulation of amylase release by these agents. In the absence of extracellular calcium, carbachol was still able to elicit a rise in [Ca2+]i. These studies indicate that pancreatic secretagogues induce an increase in [Ca2+]i of acinar cells, both in the presence or absence of extracellular calcium.  相似文献   

15.
This study was designed to examine the role of changes in cytoplasmic free calcium concentration ([Ca2+]i) during the response to alpha 1-adrenergic agonists in cultured renal proximal tubular cells. Experiments were carried out on primary cultures of canine proximal tubular cells grown in defined culture medium on a solid support, on collagen-coated polycarbonate membranes, or on collagen-coated glass coverslips. Quin-2 and fura-2 were used to monitor [Ca2+]i. The basal level of [Ca2+]i was 101 nM, as measured with quin-2, and 122 nM, as determined using fura-2. Fluorescence flow cytometry revealed that about 85% of the population of proximal tubular cells responded to phenylephrine with an increase in [Ca2+]i. Phenylephrine (10(-5) M) caused an immediate actual increase in [Ca2+]i by 18 and 24%, as determined with quin-2 and fura-2, respectively, with the peak increase in [Ca2+]i averaging 22% and 44% over the basal level (180-300 sec). This effect did not require extracellular calcium. The effect of phenylephrine was abolished by prazosin and verapamil. Fluorescence microscopy of quin-2 or fura-2 loaded cells revealed punctate areas of fluorescence within the cytoplasm suggesting vesicular uptake of the dyes. Pinocytotic entrapment of the dyes was demonstrated by the transfer of cell-impermeant fura-2 across tubular cell monolayers mounted in Ussing chambers. The transfer of the dye was similar to that of a marker of fluid-phase pinocytosis, Lucifer Yellow (LY). This pinocytotic entrapment of Ca2+-indicators would lead to underestimation of the actual calcium transients. Microfluorometric study of single proximal tubular cells "scrape-loaded" with fura-2 revealed a four-fold increase in [Ca2+]i concentration following stimulation with phenylephrine.  相似文献   

16.
When intracellular free Ca2+ concentration [( Ca2+]i) was monitored in fura2-loaded Swiss 3T3 cells, endothelin increased [Ca2+]i in a dose-dependent manner; after the addition of endothelin, an initial transient peak was observed immediately and was followed by a sustained increase in [Ca2+]i lasting at least 5 min. 45Ca2+ efflux and influx experiments in endothelin-stimulated Swiss 3T3 cells revealed that the change in [Ca2+]i could be explained by a dual mechanism; an initial transient peak induced mainly by the release of Ca2+ from intracellular stores and the sustained increase by an influx of extracellular Ca2+. Cellular generation of inositol 1,4,5-trisphosphate and cyclic AMP were not induced by endothelin, suggesting that other cellular mediators with the capacity to release Ca2+ from intracellular stores play a significant role in the signal transduction pathway of endothelin in Swiss 3T3 cells.  相似文献   

17.
Cytoplasmic free Ca2+ (Ca2+i) was chelated to 10-20 nM in the macrophage cell line J774 either by incubation with quin2 acetoxymethyl ester in the absence of external Ca2+ (Di Virgilio, F., Lew, P.D., and Pozzan, T. (1984) Nature 310, 691-693) or by loading [ethyl-enebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) into the cytoplasm via reversible permeabilization of the plasma membrane with extracellular ATP (Steinberg, T.H., Newman, A.S., Swanson, J.A., and Silverstein, SS.C. (1987) J. Biol. Chem. 262, 8884-8888; Di Virgilio, F., Meyer, B.C., Greenberg, S., and Silverstein, S.C. (1988) J. Cell Biol. 106, 657-666). After removal of ATP from the incubation medium, ATP-permeabilized Ca2+i-depleted macrophages recovered a near-normal plasma membrane potential which slowly depolarized over a 2-4 h incubation at low [Ca2+]i. In both ATP-treated and quin2-loaded cells, depolarization of plasma membrane potential was paralleled by an increase in plasma membrane permeability to low molecular weight aqueous solutes such as eosin yellowish (Mr 692), ethidium bromide (Mr 394), and lucifer yellow (Mr 463). This increased plasma membrane permeability was not accompanied by release of the cytoplasmic marker lactic dehydrogenase for incubations up to 4 h and was likely a specific effect of Ca2+i depletion since it was not caused by: (i) the mere incubation of macrophages with extracellular EGTA, i.e. at near-normal [Ca2+]i; and (ii) loading into the cytoplasm of diethylenetriaminepentaacetic acid, a specific chelator of heavy metals with low affinity for Ca2+. Treatment of Ca2+i-depleted cells with direct (phorbol 12-myristate 13-acetate) or indirect (platelet-activating factor) activators of protein kinase C prevented the increase in plasma membrane permeability. Down-regulation of protein kinase C rendered Ca2+i-depleted macrophages refractory to the protective effect of phorbol 12-myristate 13-acetate. This report suggests a role for Ca2+i and possibly protein kinase C in the regulation of plasma membrane permeability to low molecular weight aqueous solutes.  相似文献   

18.
FUTAO  YONGHUAXU 《Cell research》1994,4(2):145-153
Epidermal growth factor(EGF) induced intracellular free calcium ([Ca^2 ]i) response was studied in fura-2- or fluo-3-loaded human hepatoma cells of BEL-7404 cell line.Single cell[Ca^2 ]i analysis and [Ca^2 ]i measurement in cell populations revealed that EGF triggered a rapid[Ca^2 ]i increase in the dose-dependent and time-dependent manner.Pretreatment of cells with an endoplasmic reticulum(ER) Ca^2 -ATPase inhibitor,thapsigargin(TG) at 100nM concentration for 20 min,completely abolished EGF-induced [Ca^2 ]i increase,and chelating extracellular calcium by excess EGTA partially inhibited the increase.Furthermore,the expression of antisense EGF receptor sequence in BEL-7404 cells suppressed the [Ca^2 ]i response to EGF.The results suggest that EGF receptor-mediated [Ca^2 ]i increase in the human hepatoma cells is essentially dependent on the Ca^2 storage in ER.  相似文献   

19.
Cross-linking the high affinity IgE receptor, Fc epsilon R1, with multivalent antigen induces inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-dependent release of intracellular Ca2+ stores, Ca2+ influx, and secretion of inflammatory mediators from RBL-2H3 mast cells. Here, fluorescence ratio imaging microscopy was used to characterize the antigen-induced Ca2+ responses of single fura-2-loaded RBL-2H3 cells in the presence and absence of extracellular Ca2+ (Ca2+o). As antigen concentration increases toward the optimum for secretion, more cells show a Ca2+ spike or an abrupt increase in [Ca2+]i and the lag time to onset of the response decreases both in the presence and the absence of Ca2+o. When Ca2+o is absent, fewer cells respond to low antigen and the lag times to response are longer than those measured in the presence of Ca2+o, indicating that Ca2+o contributes to Ca2+ stores release. Ins(1,4,5)P3 production is not impaired by the removal of Ca2+o, suggesting that extracellular Ca2+ influences Ca2+ stores release via an effect on the Ins(1,4,5)P3 receptor. Stimulation with low concentrations of antigen can lead, only in the presence of Ca2+o, to a small, gradual increase in [Ca2+]i before the abrupt spike response that indicates store release. We propose that this small, initial [Ca2+]i increase is due to receptor-activated Ca2+ influx that precedes and may facilitate Ca2+ stores release. A mechanism for capacitative Ca2+ entry also exists in RBL-2H3 cells. Our data suggest that a previously undescribed response to Fc epsilon R1 cross-linking, inhibition of Ca2+ stores refilling, may be involved in activating capacitative Ca2+ entry in antigen-stimulated RBL-2H3 cells, thus providing the elevated [Ca2+]i required for optimal secretion. The existence of both capacitative entry and Ca2+ influx that can precede Ca2+ release from intracellular stores suggests that at least two mechanisms of stimulated Ca2+ influx are present in RBL-2H3 cells.  相似文献   

20.
Mi P  Gregerson DS  Kawashima H 《Cytokine》2000,12(3):253-264
Corneal endothelial cells (CE cells) inhibit antigen- and mitogen-activated lymphocyte proliferation assays, although interleukin 2 receptor (IL-2R) expression and responsiveness to exogenous IL-2 are unaffected. To examine this activity further, co-cultures of CE cells and T cell clones were studied. CE cells inhibited IL-2 and IL-4 production by T cells stimulated with Ag and APC, but not IL-5 or IL-6 production. CE cells also inhibited NFAT-driven lacZ reporter gene production following Ag stimulation of transfected KZO T hybridoma cells. Conversely, stimulation of IL-2 production by ionomycin, with or without PMA, was unaffected by the CE cells. Preincubation of KZO hybridoma or Jurkat cells with CE cells, or CE cell-conditioned culture supernatant, inhibited the intracellular calcium ([Ca(2+)](i)) increase induced by TCR ligation, but not the [Ca(2+)](i)increase induced by ionomycin or thapsigargin. The inhibitory effect was independent of APC and did not act by blocking costimulation, since IL-2 production stimulated by immobilized anti-CD3 alone was also inhibited by CE cells. The supernatant factor was heat labile. This novel activity is unlike other immunoregulatory molecules, including transforming growth factor beta (TGF-beta) and may contribute to local immune privilege.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号