首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 μM. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore).Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 μM.These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

2.
Membrane transport carrier function, its regulation and coupling to metabolism, can be selectively investigated dissociated from metabolism and in the presence of a defined electrochemical ion gradient driving force, using the single internal compartment system provided by vesiculated surface membranes. Vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated transport of several neutral amino acids into an osmotically-sensitive intravesicular space without detectable metabolic conversion of substrate. When a Na+ gradient, external Na+ > internal Na+, was artifically imposed across vesicle membranes, accumulation of several neutral amino acids achieved apparent intravesicular concentrations 6- to 9-fold above their external concentrations. Na+-stimulated alanine transport activity accompanied plasma membrane material during subcellular fractionation procedures. Competitive interactions among several neutral amino acids for Na+-stimulated transport into vesicles and inactivation studies indicated that at least 3 separate transport systems with specificity properties previously defined for neutral amino acid transport in Ehrlich ascites cells were functional in vesicles from mouse fibroblasts: the A system, the L system and a glycine transport system. The pH profiles and apparent Km values for alanine and 2-aminoisobutyric acid transport into vesicles were those expected of components of the corresponding cellular uptake system. Several observations indicated that both a Na+ chemical concentration gradient and an electrical membrane potential contribute to the total driving force for active amino acid transport via the A system and the glycine system. Both the initial rate and quasi-steady-state of accumulation were stimulated as a function of increasing concentrations of Na+ applied as a gradient (external > internal) across the membrane. This stimulation was independent of endogenous Na+, K+-ATPase activity in vesicles and was diminished by monensin or by preincubation of vesicles with Na+. The apparent Km for transport of alanine and 2-aminoisobutyric acid was decreased as a function of Na+ concentration. Similarly, in the presence of a standard initial Na+ gradient, quasi-steady-state alanine accumulation in vesicles increased as a function of increasing magnitudes of interior-negative membrane potential imposed across the membrane by means of K+ diffusion potentials (internal > external) in the presence of valinomycin; the magnitude of this electrical component was estimated by the apparent distributions of the freely permeant lipophilic cation triphenylme thylphosphonium ion. Alanine transport stimulation by charge asymmetry required Na+ and was blocked by the further addition of either nigericin or external K+. As a corollary, Na+-stimulated alanine transport was associated with an apparent depolarization, detectable as an increased labeled thiocyanate accumulation. Permeant anions stimulated Na+-coupled active transport of these amino acids but did not affect Na+-independent transport. Translocation of K+, H+, or anions did not appear to be directly involved in this transport mechanism. These characteristics support an electrogenic mechanism in which amino acid translocation is coupled t o an electrochemical Na+ gradient by formation of a positively charged complex, stoichiometry unspecified, of Na+, amino acid, and membrane component. Functional changes expressed in isolated membranes were observed t o accompany a change in cellular proliferative state or viral transformation. Vesicles from Simian virus 40-transformed cells exhibited an increased Vmax of Na+-stimulated 2-aminoisobutyric acid transport, as well as an increased capacity for steady-state accumulation of amino acids in response t o a standard Na+ gradient, relative t o vesicles from nontransformed cells. Density-inhibition of nontransformed cells was associated with a marked decrease in these parameters assayed in vesicles. Several possibilities for regulatory interactions involving gradient-coupled transport systems are discussed.  相似文献   

3.
We measured uptake of isotopically 35S-labelled sulfate anion by slices and by brush-border membrane vesicles prepared from mouse renal cortex to identify: (i) whether metabolic incorporation of anion influences net transport; (ii) which membrane is primarily exposed in the renal cortex slice. Slices accumulated sulfate without significant incorporatoin into metabolic pools. Net uptake of sulfate at 0.1 mM by the slice occurred against an electrochemical gradient as determined by mesurement of free intracellular sulfate concentration, the isotopic distribution ratio at steady-state, and the distribution of lipophilic ions (TPP+ and SCN?). Carrier mediation of sulfate transport in the slice was confirmed by observing concentration-dependent saturation of net uptake and counter-transport stimulation of efflux. Anion uptake was Na+-independent, K+- and H+-stimulated, and inhibited by disulfonated stilbenes. Brush-border membrane vesicles accumulated sulfate by a saturable mechanism dependent on a Na+ gradient (outside > inside); others have shown that uptake of sulfate by brush-border membrane vesicles is insensitive to inhibition by disulfonated stilbenes. These findings indicate that different mechanisms serve sulfate transport in renal cortex slice and brush-border membrane vesicle preparations. They also imply that the slice exposes an epithelial surface different from the brush-border, presumably the basolateral membrane, or its equivalent, since sulfate transport by slices resembles that obserbed with isolated basolateral membrane vesicles.  相似文献   

4.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

5.
Superoxide dismutase: a photochemical augmentation assay.   总被引:21,自引:0,他引:21  
Cell envelope vesicles containing bacteriorhodopsin, prepared from Halobacterium halobium, have previously been shown to accumulate glutamate to high concentration gradients when illuminated. This active transport is energized by a sodium gradient (Naout+ ? Nain+), which arises from Na+-efflux coupled to the light-induced H+-gradient. The oxidation of dimethyl phenylenediamine (DPD) by the vesicles also can drive uphill glutamate transport, and such transport is inhibited by KCN, azide, ionophores, or uncouplers. KT for glutamate is 1.4 × 10?7m under these conditions, as compared to 1.3 × 10?7m for light-induced transport. The respiration-induced transport of glutamate is dependent on high Na+ concentrations on the vesicle exterior and requires low Na+ concentrations in the interior. When Na+ of increasing concentrations is included in the vesicles, transport proceeds with increasing lags, similarly to the case of light-driven transport. In vesicles to which DPD is added first, and then KCN at increasing time intervals (5 to 15 min), glutamate transport occurs after the addition of KCN, with increasing rates, even though respiration is inhibited. This indicates that the energy generated by DPD-oxidation is conserved over several minutes. These results suggest that in the case of respiration-dependent glutamate transport the translocation is also driven by a Na+-gradient; thus, there is a single glutamate transport system independent of the source of energy. The generation of such an Na+-gradient during DPD-oxidation implies that the respiration component involved, cytochrome oxidase, is functionally equivalent to bacteriorhodopsin, which acts as a proton pump.  相似文献   

6.
To prepare membrane vesicles, nerve terminal preparations (synaptosomes) isolated from rat cerebral cortex were first subjected to hypotonic lysis. After collecting the membranes contained in this fraction by centrifugation, membrane vesicles were then reconstituted during incubation in a potassium salt solution at 37 °C. The transport of glutamate, aspartate, or γ-aminobutyric acid (GABA) was measured by transferring vesicles to 10 vol of 0.1 m NaCl solution containing the radioactive substrate. Transport was temperature dependent and exhibited saturation kinetics with an apparent Km of 2.5 μm. The rates and extent of l-glutamate and l-aspartate uptake were equivalent and were greater than those for GABA. Valinomycin increased the rate of uptake of each of these substances suggesting a role for an electrogenic component in transport. Consonant with this notion, external K+ and Rb+ decreased uptake of all three compounds. External thiocyanate also increases the rate of glutamate, aspartate, and GABA transport. Uptake of these neuroactive amino acids was absolutely dependent on external Na+; no other monovalent cation tested substitutes for it. Gramicidin D and nigericin inhibit glutamate transport by abolishing both the Na+ and K+ gradients. Monensin inhibits uptake by selectively dissipating the Na+ gradient. For both glutamate and GABA transport, the Na+ and K+ gradients are synergistic and not additive.  相似文献   

7.
Inside-out membrane vesicles have been prepared from sheep reticulocytes. With these vesicles, Na+-dependent glycine uptake and net accumulation have been demonstrated to occur in reverse, i.e., from extravesicular (normal cytoplasmic) to intravesicular (normal extravesicular) surface. Uptake and accumulation are inhibited by energization of the sodium pump by ATP whereby the Na+ electrochemical gradient is dissipated. Glycine-dependent Na+ uptake was also observed, providing evidence that Na+-dependent glycine influx into these vesicles, equivalent to normal efflux, is characterized by Na+-glycine co-transport.  相似文献   

8.
The Na+-dependent transport of 5-oxoproline into rabbit renal brush-border vesicles was stimulated by a K+ diffusion potential (interior-negative) induced by valinomycin. Na+ salts of two anions of different epithelial permeabilities also affected 5-oxoproline transport. These results show that the Na+-dependent 5-oxoproline transport in renal brush-border vesicles is an electrogenic process which results in a net transfer of positive charge. Maximum transport of 5-oxoproline occurred at an extravesicular pH of 6.0 to 8.0 and over that pH range, 5-oxoproline exists completely as an anion with a negative charge. The simplest stoichiometry consistent with this process is, therefore, the cotransport of one 5-oxoproline anion with two sodium ions. The presence of K+ inside the vesicles stimulated the Na+-dependent transport of 5-oxoproline. This stimulatory effect was specific for K+ and required the presence of Na+. The presence of Na+ gradient was not mandatory for the K+ action. The stimulation by the intravesicular K+ was seen in the presence as well as in the absence of a K+ gradient. Therefore, the increased influx of 5-oxoproline was not coupled to the simultaneous efflux of K+. The presence of K+ in the extravesicular medium alone did not affect the Na+-dependent transport of 5-oxoproline, showing that the site of K+ action was intravesicular. Glutamate did not interact with the Na+-dependent 5-oxoproline transport even in the presence of an outward K+ gradient.  相似文献   

9.
In the presence of a Na+-gradient (out > in), l-glutamic acid and l-and d-aspartic acids were equally well concentrated inside the vesicles, while no transport above simple diffusion levels was seen by replacement of Na+ by K+. Equilibrium uptake values were found inversely proportional to the medium osmolarity, thus demonstrating uptake into an osmotically sensitive intravesicular space. The extrapolation of these lines to infinite medium osmolarity (zero space) showed only a small binding component in acidic amino-acid transport. When the same experiment was performed at saturating substrate concentrations, linear relationships extrapolating through the origin but showing smaller slope values were recorded, thus indicating that the binding component could be more important than suspected above. However, binding to the membrane was neglected in our studies as it was absent from initial rate measurements. Na+-dependent uphill transport of l-glutamic acid was stimulated by K+ present on the intravesicular side only but maximal stimulation was recorded under conditions of an outward K+-gradient (in > out). Quantitative and qualitative differences in the K+ effect were noted between pH 6.0 and 8.0. Initial uptake rates showed pH dependency in Na+-(out > in) + K+-(in > out) gradient conditions only with a physiological pH optimum between 7.0 and 7.5. It was also found that a pH-gradient (acidic outside) could stimulate both the Na+-gradient and the Na+ + K+-gradient-dependent transport of l-glutamic acid. However, pH- or K+-gradient alone were ineffective in stimulating uptake above simple diffusion level. Finally, it was found that increased rates of efflux were always observed with an acidic pH outside, whatever the conditions inside the vesicles. From these results, we propose a channel-type mechanism of l-glutamic acid transport in which Na+ and K+ effects are modulated by the surrounding pH. The model proposes a carrier with high or low affinity for Na+ in the protonated or unprotonated forms, respectively. We also propose that K+ binding occurs only to the unprotonated carrier and allows its fast recycling as compared to the free form of the carrier. Such a model would be maximally active and effective in the intestine in the in vivo physiological situations.  相似文献   

10.
Sodium transport into rabbit kidney medulla microsomes was 50% inhibited by amiloride. This Na+ uptake was shown to represent transport when the uptake process was reversed by the ionophore nigericin. The transport was complete within 60 min and proportional to the microsomal protein concentration. The effect of amiloride on transport was specific since the similar compound sulfaguanidine failed to affect microsomal Na+ transport. Amiloride-sensitive Na+ transport into microsomes was inhibited 70% by decreasing the pH (from 7.0 to 5.9), but was unaffected by the presence of a pH gradient. The kinetics of Na+ transport could be explained by a simple model, assuming that amiloride lowered the rate of Na+ entrance into the vesicles but had no effect on the rate of efflux. The failure of amiloride to effect efflux from the vesicles was also demonstrated directly.  相似文献   

11.
Selenate and selenite uptakes by isolated intestinal brush border membrane vesicles (BBMV) from pig, sheep, and rat were investigated. Selenate uptake into jejunal and ileal, but not duodenal, BBMV from pig was stimulated by an inwardly directed transmembrane Na+ gradient (Na out + >Na in + ). Selenate transport into rat ileal and sheep jejunal BBMV was also enhanced in the presence of a Na+ gradient. Unlike selenate uptake, selenite uptake was not Na+ dependent, neither in pig small intestine nor in sheep jejunum and rat ileum. Uptake of selenate represented real uptake into the vesicular lumen, whereas selenite uptake was a result of an extensive binding of75Se to the membranes. Thiosulfate at a 250-fold concentration of selenate completely inhibited Na+-dependent selenate uptake into pig jejunal BBMV. Furthermore, Na+-dependent sulfate uptake was totally inhibited in the presence of a 250-fold selenate concentration. The results clearly show that selenate transport across the BBM of pig jejunum and ileum, sheep jejunum, and rat ileum is partially energized by a transmembrane Na+ gradient. Moreover, it is concluded from the results that there exists a common transport mechanism for sulfate and selenate in the BBM. The extensive binding of75Se from75Se-labeled selenite to the membranes could be from a spontaneous reaction of selenite with membrane-associated SH groups.  相似文献   

12.
The effects of the air pollutants O3, SO2 and NO2 on aspects of sucrose/proton cotransport across the plasma membrane of Ricinus communis plants have been investigated. The H+-ATPase hydrolytic activity in cotyledon plasma membrane vesicles purified by phase partitioning showed small stimulations by Na2SO3 or NaNO3 added separately or together to the assay medium. ATPase activity from plants pretreated by fumigation with SO2 or O3 also showed an increase, the effect of O3 being quite marked. Plasma membrane H+-pumping in KI-treated microsomal fractions and medium acidification by intact cotyledons both showed small decreases in the presence of Na2SO3 or NaNO2. Both Na2SO3 and NaNO2 at high concentrations (2 mol m–3) had significant effects on sucrose uptake by intact cotyledons, although sucrose efflux was unaffected. No significant effects on sucrose uptake or efflux by intact cotyledons were observed in plants pretreated by fumigation with SO2 or O3. Proton-coupled sucrose transport in isolated plasma membrane vesicles was inhibited in the presence of Na2SO3 or NaNO2. However, both pollutants also significantly inhibited the uptake of acetate by the vesicles, indicating a dissipation of the pH gradient across the membrane. It was concluded that no specific aspect of the sucrose/proton cotransport mechanism was damaged by these air pollutants, and that the effects of these pollutants on carbohydrate partitioning are more likely to be due to general effects on membrane integrity or on other aspects such as leaf carbohydrate metabolism.  相似文献   

13.
NaCl Induces a Na/H Antiport in Tonoplast Vesicles from Barley Roots   总被引:22,自引:10,他引:12       下载免费PDF全文
Evidence was found for a Na+/H+ antiport in tonoplast vesicles isolated from barley (Hordeum vulgare L. cv California Mariout 72) roots. The activity of the antiport was observed only in membranes from roots that were grown in NaCl. Measurements of acridine orange fluorescence were used to estimate relative proton influx and efflux from the vesicles. Addition of MgATP to vesicles from a tonoplast-enriched fraction caused the formation of a pH gradient, interior acid, across the vesicle membranes. EDTA was added to inhibit the ATPase, by chelating Mg2+, and the pH gradient gradually dissipated. When 50 millimolar K+ or Na+ was added along with the EDTA to vesicles from control roots, the salts caused a slight increase in the rate of dissipation of the pH gradient, as did the addition of 50 millimolar K+ to vesicles from salt-grown roots. However, when 50 millimolar Na+ was added to vesicles from salt-grown roots it caused a 7-fold increase in the proton efflux. Inclusion of 20 millimolar K+ and 1 micromolar valinomycin in the assay buffer did not affect this rapid Na+/H+ exchange. The Na+/H+ exchange rate for vesicles from salt-grown roots showed saturation kinetics with respect to Na+ concentration, with an apparent Km for Na+ of 9 millimolar. The rate of Na+/H+ exchange with 10 millimolar Na+ was inhibited 97% by 0.1 millimolar dodecyltriethylammonium.  相似文献   

14.
Summary A model with a carrier having sites for both amino acid and Na+ can account for AIB (-aminoisobutyric acid) transport kinetics observed in membrane vesicles from SV3T3 (simian virus 40-tranformed Balb/c3T3 cells) and 3T3 (the parent cell line). The main feature of this cotransport model is that Na+ binding to carrier decreases the effectiveK m for AIB transport, Na+ transport kinetics observed in both vesicle systems can be described by passive (possibly facilitated) diffusion. The lag of Na+ transport across the membrane compared to that for AIB, coupled to the Na+-dependent decrease in theK m for AIB, accounts for the overshoot in intravesicular AIB observed for SV3T3 in the presence of an initial Na+ gradient. Extra-vesicular Na+ maintains a derease in theK m for AIB influx before intra-vesicular Na+ has accumulated to balance it with a comparable decrease in theK m for AIB efflux. 3T3 vesicles display little overshoot, and this finding can be explained mostly by a lower carrier affinity for Na+.  相似文献   

15.
Membrane vesicles prepared from E. coli B strain 29–78 require Na+ for the accumulation of glutamate. Respiratory-driven transport of glutamate but not lysine is sensitive to the ionophore monensin. An artificially-imposed sodium gradient and/or membrane potential drives glutamate uptake. These results suggest that glutamate is accumulated via a Na+/glutamate symport.  相似文献   

16.
Light-induced Na+ efflux was observed in sub-bacterial particles of Halobacterium halobium loaded and suspended in 4 M NaCl solution. The Na+ efflux was not ATP driven, since ATPase inhibitors were without effect or even enhanced efflux at low light intensity. Uncouplers, on the other hand, inhibited Na+ efflux, the inhibition being complete at low light intensity. The Na+ efflux was accompanied by proton influx. Both processes were dependent on light intensity, unaffected or enhanced by ATPase inhibitors and similarly affected by uncouplers. Proton influx was not observed in particles loaded with 4 M KCl instead of 4 M NaCl. Na+ transport in the dark could be induced by artificial formation of a pH difference across the membrane; changing the sign of the pH difference reversed the direction of the Na+ transport. Proton influx in the dark followed the artificial formation of a sodium gradient ([Na+]in > [Na+]out). These results may be explained by a Na+/H+ antiport mechanism. The fluxes of Na+ and H+ were of comparable magnitude, but the initial rate of Cl? efflux in the same experiment was one-third of the initial rate of Na+ efflux. Consequently Cl? is not regarded as a participant in the Na+ efflux mechanism.  相似文献   

17.
Right-side-out plasma membrane vesicles were isolated from wheat roots using an aqueous polymer two-phase system. The purity and orientation of the vesicles were confirmed by marker enzyme analysis. Membrane potential (Ψ)-dependent 22Na+ influx and sodium/proton (Na+/ H+) antiport-mediated efflux across the plasma membrane were studied using these vesicles. Membrane potentials were imposed on the vesicles using either K+ gradients in the presence of valinomycin or H+ gradients. The ΔΨ was quantified by the uptake of the lipophilic cation tetraphenylphosphonium. Uptake of Na+ into the vesicles was stimulated by a negative ΔΨ and had a Km for extrav-esicular Na+ of 34.8 ± 5.9 mol m3. The ΔΨ-dependent uptake of Na+ was similar in vesicles from roots of hexaploid (cv. Troy) and tetraploid (cv. Langdon) wheat differing in a K+/Na+ discrimination trait, and was also unaffected by growth in 50 mol m?3 NaCl. Inhibition of ΔΨ-dependent Na+ uptake by Ca2+ was greater in the hexaploid than in the tetraploid. Sodium/proton antiport was measured as Na+-dependent, amiloride-inhibited pH gradient formation in the vesicles. Acidification of the vesicle interior was measured by the uptake of 14C-methylamine. The Na+/H+ antiport had a Km, for intravesicular Na+ of between 13 and 19 mol m?3. In the hexaploid, Na+/H+ antiport activity was greater when roots were grown in the presence of 50 mol m?3NaCl, and was also greater than the activity in salt-grown tetraploid wheat roots. Antiport activity was not increased in a Langdon 4D chromosome substitution line which carries a trait for K+/Na+ discrimination. It is concluded that neither of the transport processes measured is responsible for the Na+/K+ discrimination trait located on the 4D chromosome of wheat.  相似文献   

18.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

19.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7 · 10?4 M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ > Rb+ > Cs+ > Na+ > Li+ and is inhibited by ATPase inhibitors such as N,N′-dicylclohexylcarbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphorylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K? gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive skin with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

20.
This study concerns the uptake of inorganic phosphate into brush-border membrane vesicles prepared from jejunal tissues of either control or Ca-and/or P-depleted goats. The brush-border membrane vesicles showed a time-dependent accumulation of inorganic phosphate with a typical overshoot phenomenon in the presence of an inwardly directed Na+ gradient. The Na+-dependent inorganic phosphate uptake was completely inhibited by application of 5 mmol·l-1 sodium arsenate. Half-maximal stimulation of inorganic phosphate uptake into brush-border membrane vesicles was found with Na+ concentrations in the order of 5 mmol·l-1. Inorganic phosphate accumulation was not affected by a K+ diffusion potential (inside negative), suggesting an electroneutral transport process. Stoichiometry suggested an interaction of two or more Na ions with one inorganic phosphate ion at pH 7.4. Na+-dependent inorganic phosphate uptake into jejunal brush-border membrane vesicles from normal goats as a function of inorganic phosphate concentration showed typical Michaelis-Menten kinetic with V max=0.42±0.08 nmol·mg-1 protein per 15 s-1 and K m=0.03±0.01 mmol·l-1 (n=4, x ±SEM). Long-term P depletion had no effect on these kinetic parameters. Increased plasma calcitriol concentrations in Ca-depleted goats, however, were associated with significant increases of V max by 35–80%, irrespective of the level of P intake. In the presence of an inwardly directed Na+ gradient inorganic phosphate uptake was significantly stimulated by almost 60% when the external pH was decreased to 5.4 (pHout/pHin=5.4/7.4). The proton gradient had no effect on inorganic phosphate uptake in absence of Na+. In summary, in goats Na+ and calcitriol-dependent mechanisms are involved in inorganic phosphate transport into jejunal brush-border membrane vesicles which can be stimulated by protons.Abbreviations AP activity of alkaline phosphatase - BBMV brush-border membrane vesicles - EGTA ethyleneglycol-triacetic acid - n app apparent Hill coefficient - P i inorganic phosphate - PTH parathyroid hormone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号