首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Electronic properties were correlated with observed reductive dechlorination pathways by unacclimated consortia for chlorinated phenols, dihydroxybenzenes, benzoic acids, and anilines. Molecular structures and properties were calculated using the semi-empirical Modified Neglect of Differential Overlap method at the Cornell Supercomputing Facility. Observed preferential positions for reductive dechlorination by unacclimated consortia correlate well with the largest negative value for the carbon-chlorine bond charge. Of 16 dechlorination pathways observed for unacclimated bacteria, the most negative carbon-chlorine bond charge correlated with 15 pathways.This correlation between the observed dechlorination position and the parent compound's electronic properties is consistent with the observed reductive dechlorination of chlorophenols and chlorinated dihydroxybenzenes at the ortho position, and the meta dechlorination of chlorobenzoic acids. Net carbonchlorine bond charges also correlate with the preferred dechlorination position for two of three known chloroaniline pathways, suggesting preferential removal of chlorines from the ortho position of chloroanilines.Abbreviations CA chloroaniline - CBz chlorobenzoic acid - CC chlorocatechol - CP chlorophenol - DCA dichloroaniline - DCBz dichlorobenzoic acid - DCC dichlorocatechol - DCH dichlorohydroquinone - DCP dichlorophenol - DCR dichlororesorcinol - PCP pentachlorophenol - TCA trichloroaniline - TCBz trichlorobenzoic acid - TCC trichlorocatechol - TCH trichlorohydroquinone - TCP trichlorophenol - TCR trichlororesorcinol - TeCA tetrachloroaniline - TeCBz tetrachlorobenzoic acid - TeCC tetrachlorocatechol - TeCH tetrachlorohydroquinone - TeCP tetrachlorophenol - TeCR tetrachlororesorcinol  相似文献   

2.
Complete mineralization of 50 µM of pentachlorophenol (PCP) was achieved anaerobically under continuous flow conditions using two columns connected in series with a hydraulic retention time of 14.2 days, showing the highest reported mineralization rate yet of 3.5 µM day?1. The first column, when injected with a reductive PCP dechlorinating consortium, dechlorinated PCP to mainly phenol and traces of 3‐chlorophenol (3‐CP) using lactate supplied continuously as an electron donor. The second column, with an anaerobic phenol degrading consortium, decomposed phenol and 3‐CP under iron‐reducing conditions with substantial fermentative degradation of organic compounds. When 20 mM of lactate was introduced into the first column, the phenol degradation activity of the second column was lost in a short period of time, because the amorphous Fe(III) oxide (FeOOH) that had been packed in the column before use was depleted by lactate metabolites, such as acetate and propionate, flowing into the second column from the first column. The complete mineralization of PCP was maintained for a long period by reducing the lactate concentration to 4 mM, effectively extending the longevity of second‐column activity with no depletion of FeOOH for more than 200 pore volumes (corresponding to 3,000 days). The carbon balance showed that 50 µM PCP and 4 mM lactate in the influent had transformed to CO2 (81%) and CH4 (3%) and had contributed to biomass growth (8%). A comparison of the microbial consortia introduced into the columns and those flowing out from the columns suggested that the introduced population did not flow out during the experiments, although the microbial composition of the phenol column was considered to be affected by the inflow of microbes from the PCP dechlorination column. These results suggest that a sequential combination of reductive dechlorinating and anaerobic oxidizing consortia is useful for anaerobic remediation of chlorinated aromatic compounds in a microbial permeable reactive barrier. Biotechnol. Bioeng. 2010;107: 775–785. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Four methanogenic consortia which degraded 2-chlorophenol, 3-chlorophenol, 2-chlorobenzoate, and 3-chlorobenzoate, respectively, and one nitrate-reducing consortium which degraded 3-chlorobenzoate were characterized. Degradative activity in these consortia was maintained by laboratory transfer for over 2 years. In the methanogenic consortia, the aromatic ring was dechlorinated before mineralization to methane and carbon dioxide. After dechlorination, the chlorophenol consortia converted phenol to benzoate before mineralization. All methanogenic consortia degraded both phenol and benzoate. The 3-chlorophenol and 3-chlorobenzoate consortia also degraded 2-chlorophenol. No other cross-acclimation to monochlorophenols or monochlorobenzoates was detected in the methanogenic consortia. The consortium which required nitrate for the degradation of 3-chlorobenzoate degraded benzoate and 4-chlorobenzoate anaerobically in the presence of KNO3, but not in its absence. This consortium also degraded benzoate, but not 3-chlorobenzoate, aerobically.  相似文献   

4.
Dechlorination studies were conducted using microbial cultures developed in a fluidized-bed reactor (FBR) that dechlorinates pentachlorophenol (PCP) to 3,4-dichlorophenol (3,4-DCP) and 4-monochlorophenol (4-MCP). Electron donor experiments demonstrated that lactate, propionate, and H2 can serve as electron donors for chlorophenol (CP) dechlorination in mixed, anaerobic, PCP-enriched cultures. Dechlorination did not proceed in the absence of an electron donor. Acetate, which resulted in little H2 production, was a poor electron donor. The results of inhibition studies using vancomycin and 2-bromoethanesulfonic acid implicate members of the domain bacteria in the dechlorination of CPs, whereas methanogens do not appear to be involved in dechlorination. Brief heat treatment (80°C for 90 min) of the FBR enrichment cultures implicated endospore formers in the dechlorination of CPs, primarily at the ortho position, where PCP was dechlorinated to 3,4,5-trichlorophenol (3,4,5-TCP) (the sole TCP detected) and subsequently to 3,4-DCP. Both lactate and H2 served as electron donors in the heat-and oxygen-treated cultures. In contrast, a lactate-fed anaerobic spread-plate enrichment culture exhibited solely meta-dechlorination, where PCP dechlorinated solely to 2,4,6-TCP. The separation of ortho- and meta-specific dechlorination reactions provides evidence that PCP dechlorination in the FBR enrichment culture was catalyzed by at least the following two separate groups of CP-dechlorinating bacteria: one meta-dechlorinating group and one primarily ortho-dechlorinating group.  相似文献   

5.
A sulfidogenic consortium enriched from an estuarine sediment utilized 4-chlorophenol as a sole source of carbon and energy. Reductive dechlorination as the initial step in chlorophenol degradation by the sulfate-reducing consortium was confirmed with the use of chloro-fluorophenols. Both 4-chloro-2-fluorophenol and 4-chloro-3-fluorophenol were dechlorinated, resulting in stoichiometric accumulation of 2-fluorophenol and 3-fluorophenol, respectively. The fluorophenols were not degraded further. Furthermore, phenol was detected as a transient intermediate during degradation of 4-chlorophenol in the presence of 3-fluorophenol. Reductive dechlorination was inhibited by molybdate and did not occur in the absence of sulfate. These results indicate that 4-chlorophenol is reductively dechlorinated to phenol under sulfate-reducing conditions and mineralization of the phenol ring to CO2 is coupled to sulfate reduction.  相似文献   

6.
We studied the degradation of pentachlorophenol (PCP) under methanogenic and sulfate-reducing conditions with an anaerobic mixed culture derived from sewage sludge. The consortium degraded PCP via 2,3,4,5-tetrachlorophenol, 3,4,5-trichlorophenol, and 3,5-dichlorophenol and eventually accumulated 3-chlorophenol. Dechlorination of PCP and metabolites was inhibited in the presence of sulfate, thiosulfate, and sulfite. A decrease in the rate of PCP transformation was noted when the endogenous dissolved H2 was depleted below 0.11 μM in sulfate-reducing cultures. The effect on dechlorination observed with sulfate could be relieved by addition of molybdate, a competitive inhibitor of sulfate reduction. Addition of H2 reduced the inhibition observed with sulfuroxy anions. The inhibitory effect of sulfuroxy anions may be due to a competition for H2 between sulfate reduction and dechlorination. When cultured under methanogenic conditions, the consortium degraded several chlorinated and brominated phenols.  相似文献   

7.
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 μg PCP g−1 VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l−1 day−1 for R1, and from 0.06 to 4.15 mg PCP l−1 day−1 for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m−3 day−1 at hydraulic retention times (HRT) of 24 h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.  相似文献   

8.
Chlorophenol degradation coupled to sulfate reduction.   总被引:11,自引:9,他引:2       下载免费PDF全文
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

9.
Chlorophenol degradation coupled to sulfate reduction   总被引:2,自引:0,他引:2  
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

10.
An aerobic, continuous-flow fluidized-bed reactor was established with inoculum from activated sludge, and fed a mixture of 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP) and pentachlorophenol (PCP) as the sole sources of carbon and energy for 2 years. Experiments with the enrichment were performed with material from the reactor. Later, degradation experiments were completed using pure cultures of bacteria that were isolated from suspended samples of the carrier biofilm. In batch-bottle bioassays, the reactor enrichment degraded PCP, TeCP and TCP both in mineral salts (MS) and tryptone-yeast extract-glucose (TGY) media. ortho-Methoxylated chlorophenols including 4,5-dichloroguaiacol (4,5-DCG), tetrachloroguaiacol (TeCG) and trichlorosyringol (TCS) resisted biodegradation by the enrichment both in MS and TGY media, whereas 5,6-dichlorovanillin (5,6-DCV) was readily transformed to an unidentified metabolite. Experiments with 14C labeled chlorophenols showed mineralization of 2,4-dichlorophenol (DCP) and 2,3,5-TCP to 14CO2 by the enrichment. Material from the suspended biofilm after continuous chlorophenol feeding for 2 years was inoculated onto TGY-agar plates, and showed predominantly two colony, types accounting for over 99% of the total colony counts. The two colony types, were equal in abundance. Six Gram-negative, oxidase- and catalase-positive, non-fermentative small rods were isolated in TGY agar media supplemented with 10 mg/l of TeCP or PCP. All isolates formed colonies in TGY plus 150 mg/l of PCP. The isolates degraded TCP and TeCP but not PCP. In mixtures of isolated bacteria the rates of chlorophenol degradation were similar to those observed with individual isolates. Three isolates were identified as Pseudomonas saccharophila and three were an unidentified species of Pseudomonas.  相似文献   

11.
Sulfidogenic consortia enriched from an estuarine sediment were maintained on either 2-, 3-, or 4-chlorophenol as the only source of carbon and energy for over 5 years. The enrichment culture on 4-chlorophenol was the most active and this consortium was selected for further characterization. Utilization of chlorophenol resulted in sulfate depletion corresponding to the values expected for complete mineralization to CO2. Degradation of 4-chlorophenol was coupled to sulfate reduction, since substrate utilization was dependent on sulfidogenesis and chlorophenol loss did not proceed in the absence of sulfate. Other sulfur oxyanions, sulfite or thiosulfate, also served as electron acceptors for chlorophenol utilization, while carbonate, nitrate, and fumarate did not. The sulfidogenic consortium utilized phenol, 4-bromophenol, and 4-iodophenol in addition to 4-chlorophenol. 4-Fluorophenol, however, did not serve as a substrate. 4-Bromo- and 4-iodophenol were degraded with stoichiometric release of halide, and 4-[14C]bromophenol was mineralized, with 90% of the radiolabel recovered as CO2.  相似文献   

12.
A methanogenic and sulfate-reducing consortium, which was enriched on medium containing tetrachloroethylene (PCE), had the ability to dechlorinate high concentrations of PCE. Dehalogenation was due to the direct activity of methanogens. However, interactions between methanogenic and sulfate-reducing bacteria involved modification of the dechlorination process according to culture conditions. In the absence of sulfate, the relative percentage of electrons used in PCE dehalogenation increased after an addition of lactate in batch conditions. The sulfate reducers would produce further reductant from lactate catabolism. This reductant might be used by methanogenic bacteria in PCE dechlorination. A mutualistic interaction was observed in the absence of sulfate. However in the presence of sulfate, methanogenesis and dechlorination decreased because of interspecific competition, probably between the H(2)-oxydizing methanogenic and sulfate-reducing bacteria in batch conditions. In the semicontinuous fixed-bed reactor, the presence of sulfate did not affect dechlorination and methanogenesis. The sulfate-reducing bacteria may not be competitors of H(2)-consuming methanogens in the reactor because of the existence of microbial biofilm. The presence of the fixed film may be an advantage for bioremediation and industrial treatment of effluent charged in sulfate and PCE. This is the first report on the microbial ecology of a methanogenic and sulfate-reducing PCE-enrichment consortium.  相似文献   

13.
The strictly anaerobic, pentachlorophenol (PCP) degrading bacterium DCB-2 was immobilized in an Upflow Anaerobic Sludge Blanket (UASB) reactor containing sterile granules. PCP and lactate were fed to the reactor and the concentration of chlorophenols in the effluent were monitored for 641 days. PCP was found to be degraded and transformed into 3.4.5-trichlorophenol in the reactor where DCB-2 was introduced into the granular sludge. PCP was still transformed to 3.4.5-trichlorophenol when the hydraulic retention time was decreased to six hours which was much lower than the generation time of DCB-2 insuring no free living cells in the reactor. This indicated that DCB-2 was immobilized in the granular layer. A control reactor that contained only sterile granules did not dechlorinate PCP indicating that the performance in the inoculated reactor was only due to the introduced bacteria. Immobilization of DCB-2 in the granules was further demonstrated by adding an antibody raised against DCB-2 to sliced granules. Bacteria thus visualized formed a net structure inside the granules. No DCB-2 bacteria could be found in granules from the control reactor. When lactate was omitted from the influent, the reactor still dechlorinated PCP in accordance with our findings that lactate was not used by DCB-2. This suggested that the reducing equivalents for reductive dechlorination were derived from the granules themselves. The reactor performance was 120 mol·l reactor-1·day-1, comparable to the best described performance of a UASB-reactor and to aerobic reactors. Our study demonstrates that granules can be constructed which possess specific abilities such as a dechlorinating activity and at the same time be high performing. This result have implications for eco-engineering of granules for anaerobic treatment of contaminated waters.  相似文献   

14.
An anaerobic consortium degrading pentachlorophenol (PCP) by methanogenic fermentation was enriched from PCP-contaminated soils. In a semi-continuous reactor, PCP biodegradation was unstable and necessitated periodic additions of unacclimated anaerobic sludge waste to restore the activity. In continuous-flow reactors, PCP degradation activity was more stable when a mixture of glucose and sodium formate was used as secondary carbon source instead of glucose. The analysis of the chlorophenol intermediates suggested that the main pathway of PCP dechlorination was PCP 2,3,5,6-tetrachlorophenol 2,3,5-trichlorophenol 3,5-dichlorophenol 3-chlorophenol phenol. In a laboratory-scale continuous-upflow fixed-film column reactor, a PCP removal of more than 99% was achieved at a PCP loading rate of 60 mol (1 reactor volume)–1 day–1 for a hydraulic retention time of 0.7 day. Analysis of culture samples taken at different levels in the reactor have shown that, at this PCP loading rate, only the lower part of the reactor was active. 3-chlorophenol and 3,5- and 3,4-dichlorophenol were detected at the different levels of the reactor. A study of the microorganisms in the biofilm was carried out by scanning electron microscopy and suggested that the microorganisms involved in the consortium were present as a well-structured arrangement. Methanosaeta-like microorganisms were observed mainly at the base of the biofilm whereas, at the surface, a larger diversity of morphotypes was observed in which coccoid or small rod organisms were dominant. This work shows the importance of the design and the control of the operation parameters on the efficiency of the fixed-film reactor.  相似文献   

15.
Vitamin B(12), reduced by titanium (III) citrate to vitamin B(12s), catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B(12) favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

16.
To better understand the fate of chlorophenols treated in upflow anaerobic sludge bed reactors, we examined the ability of sludge granules from such bioreactors to degrade two trichlorophenols and one dichlorophenol in batch incubations under controlled conditions. Biodegradation was primarily limited to two distinct activities, reductive dehalogenation of ortho- and of meta-chlorine substituents. Both 3- and 4-monochlorophenol were persistent degradation products, while 2-monochlorophenol was further degraded. We also examined factors potentially affecting the rate and extent of 2,3,6-trichlorophenol degradation. An initial concentration of up to 1.75 mM (346 mg/liter) was dehalogenated. At that concentration, dehalogenation was partially inhibited but methanogenesis from formate was not. The initial concentration affected both the extent of dehalogenation and which products were detected. The maximum dechlorination rate observed was 1.4 mumol of Cl- h-1 g of volatile suspended solids-1. Dechlorination had a temperature optimum of 50 degrees C, was inhibited by added electron acceptors, and was not appreciably affected by added electron donors. The availability of electron acceptors and electron donors did not affect the extent of chlorophenol degradation. These particular sludge granules do not appear to be capable of mineralizing phenols with meta- or para-chlorine substituents.  相似文献   

17.
Anaerobic dechlorination of pentachlorophenol (PCP) was studied in two upflow anaerobic sludge blanket reactors. One reactor received glucose (0.9 g liter-1) as an additional carbon source; the other one served as a control. The concentration of PCP in the medium was 4.5 and 3.0 mg liter-1 in the experimental and control reactors, respectively. The reactors were inoculated with granular sludge previously grown on sugar-containing wastewater. After 10 months of continuous operation, the removal of PCP was 99% in the glucose-amended reactor, whereas the removal in the control reactor varied between 32 and 77%. Furthermore, 94% of the PCP was completely dechlorinated in the glucose reactor compared with a maximum of 20% in the control reactor. In the same period, the amount of biomass in the glucose reactor had increased by approximately 150% compared with that in the control reactor, where no growth of the sludge bed occurred. Batch culture activity tests showed that the addition of glucose had a stimulatory effect on the dechlorination rate of PCP per gram of volatile solids. This indicated that the better performance of the glucose-amended reactor was due to a higher concentration of biomass and a direct stimulatory effect of glucose on the dechlorination rate. The pattern of dechlorination of PCP showed that an initial para cleavage was followed by two ortho cleavages.  相似文献   

18.
Anaerobic dechlorination of pentachlorophenol (PCP) was studied in two upflow anaerobic sludge blanket reactors. One reactor received glucose (0.9 g liter-1) as an additional carbon source; the other one served as a control. The concentration of PCP in the medium was 4.5 and 3.0 mg liter-1 in the experimental and control reactors, respectively. The reactors were inoculated with granular sludge previously grown on sugar-containing wastewater. After 10 months of continuous operation, the removal of PCP was 99% in the glucose-amended reactor, whereas the removal in the control reactor varied between 32 and 77%. Furthermore, 94% of the PCP was completely dechlorinated in the glucose reactor compared with a maximum of 20% in the control reactor. In the same period, the amount of biomass in the glucose reactor had increased by approximately 150% compared with that in the control reactor, where no growth of the sludge bed occurred. Batch culture activity tests showed that the addition of glucose had a stimulatory effect on the dechlorination rate of PCP per gram of volatile solids. This indicated that the better performance of the glucose-amended reactor was due to a higher concentration of biomass and a direct stimulatory effect of glucose on the dechlorination rate. The pattern of dechlorination of PCP showed that an initial para cleavage was followed by two ortho cleavages.  相似文献   

19.
Limited degradation of chlorophenols by anaerobic sludge granules.   总被引:5,自引:3,他引:2       下载免费PDF全文
To better understand the fate of chlorophenols treated in upflow anaerobic sludge bed reactors, we examined the ability of sludge granules from such bioreactors to degrade two trichlorophenols and one dichlorophenol in batch incubations under controlled conditions. Biodegradation was primarily limited to two distinct activities, reductive dehalogenation of ortho- and of meta-chlorine substituents. Both 3- and 4-monochlorophenol were persistent degradation products, while 2-monochlorophenol was further degraded. We also examined factors potentially affecting the rate and extent of 2,3,6-trichlorophenol degradation. An initial concentration of up to 1.75 mM (346 mg/liter) was dehalogenated. At that concentration, dehalogenation was partially inhibited but methanogenesis from formate was not. The initial concentration affected both the extent of dehalogenation and which products were detected. The maximum dechlorination rate observed was 1.4 mumol of Cl- h-1 g of volatile suspended solids-1. Dechlorination had a temperature optimum of 50 degrees C, was inhibited by added electron acceptors, and was not appreciably affected by added electron donors. The availability of electron acceptors and electron donors did not affect the extent of chlorophenol degradation. These particular sludge granules do not appear to be capable of mineralizing phenols with meta- or para-chlorine substituents.  相似文献   

20.
The steady-state growth of a Flavobacterium strain known to utilize pentachlorophenol (PCP) was examined when cellobiose and PCP simultaneously limited its growth rate in continuous culture. A concentration of 600 mg of PCP per liter in influent medium could be continuously degraded without affecting steady-state growth. We measured specific rates of PCP carbon degradation as high as 0.15 +/- 0.01 g (dry weight) of C per h at a growth rate of 0.045 h-1. Comparable specific rates of PCP degradation were obtained and maintained by PCP-adapted, natural consortia of epilithic microorganisms. The consortium results suggest that a fixed-film bioreactor containing a PCP-adapted natural microbial population could be used to treat PCP-contaminated water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号