首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R Scalia  G Booth  D J Lefer 《FASEB journal》1999,13(9):1039-1046
Vascular endothelial growth factor (VEGF) is an endothelium-specific secreted protein that induces vasodilation and increases endothelial release of nitric oxide (NO). NO is also reported to modulate leukocyte-endothelium interaction. Therefore, we hypothesized that VEGF might inhibit leukocyte-endothelium interaction via increased release of NO from the vascular endothelium. We used intravital microscopy of the rat mesenteric microcirculation to measure leukocyte-endothelium interactions 2, 4, and 24 h after systemic administration of VEGF to the rat (120 microg/kg, i.v., bolus). Superfusion of the rat mesentery with either 0.5 U/ml thrombin or 50 microM L-NAME consistently increased the number of rolling, adhering, and transmigrated leukocytes (P<0.01 vs. control mesenteries superfused with Krebs-Henseleit buffer). At 4 and 24 h posttreatment, VEGF significantly attenuated thrombin-induced and L-NAME-induced leukocyte rolling, adherence, and transmigration in rat mesenteric venules. In addition, adherence of isolated rat PMNs to thrombin-stimulated mesenteric artery segments in vitro was significantly reduced in mesenteric arteries isolated from VEGF-treated rats (P<0.001 vs. control rats). Direct measurement of NO demonstrated a threefold increase in basal NO release from aortic tissue of rats injected with VEGF, at 4 and 24 h posttreatment (P<0. 01 vs. aortic tissue from control rats). Finally, systemic administration of VEGF to ecNOS-deficient mice failed to inhibit leukocyte-endothelium interactions observed in peri-intestinal venules. We concluded that VEGF is a potent inhibitor of leukocyte-endothelium interaction, and this effect is specifically correlated to augmentation of NO release from the vascular endothelium.--Scalia, R., Booth, G., Lefer, D. J. Vascular endothelial growth factor attenuates leukocyte-endothelium interaction during acute endothelial dysfunction: essential role of endothelium-derived nitric oxide.  相似文献   

2.
Platelets roll and adhere in venules exposed to ischemia-reperfusion (I/R). This platelet-endothelial adhesion may influence leukocyte trafficking because platelet depletion decreases I/R-induced leukocyte emigration. The objectives of this study were 1) to assess the time course of platelet adhesion in the small bowel after I/R and 2) to determine the roles of endothelial and/or platelet P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) in this adhesion. The adhesion of fluorescently labeled platelets was monitored by intravital microscopy in postcapillary venules exposed to 45 min of ischemia and up to 8 h of reperfusion. Peak platelet adhesion was observed at 4 h of reperfusion. To assess the contributions of platelet and endothelial cell P-selectin, platelets from P-selectin-deficient and wild-type mice were infused into wild-type and P-selectin-deficient mice, respectively. Platelets deficient in P-selectin exhibited low levels of adhesion comparable to that in sham-treated animals. In the absence of endothelial P-selectin, platelet adhesion was reduced by 65%. Treatment with a blocking antibody against PSGL-1 reduced adhesion by 57%. These results indicate that I/R induces a time-dependent platelet-endothelial adhesion response in postcapillary venules via a mechanism that involves PSGL-1 and both platelet and endothelial P-selectin, with platelet P-selectin playing a greater role.  相似文献   

3.
2-Deoxy-D-glucose (2-DG) is a nonmetabolizable analogue of glucose that, by competitive inhibition of glucose utilization, produces a central neuroglucopenia and a peripheral hyperglycemia. This glucopenic agent was used to gain more insight into the combined effects of central glucopenia and exercise on plasma catecholamine response. This was carried out by comparing one group of exercising (26 m/min, 0% grade) rats injected with 2-DG (2-DG-EX; 250 mg/kg iv) with two control groups: one group of exercising rats injected with a saline solution (SAL-EX) and one group of resting rats injected with 2-DG (2-DG-RE). Significant (P less than 0.05) increases in blood glucose levels were observed 10 min after administration of 2-DG (7.2-13.8 and 7.3-12.4 mmol/l in 2-DG-EX and 2-DG-RE groups, respectively). These elevated blood glucose levels were maintained throughout the experiment in the 2-DG-RE condition but decreased in 2-DG-EX rats to levels observed in the SAL-EX group after 45 min of running (13.8-8.0 mmol/l). The combination of 2-DG-induced neuroglucopenia and exercise resulted in an additive response of norepinephrine (0.59 vs. 0.34 and 0.34 ng/ml; t = 12 min) and an amplified epinephrine response (1.4 vs. 0.37 and 0.31 ng/ml; t = 12 min) compared with the responses to each stimulus alone (2-DG-EX vs. 2-DG-RE and SAL-EX, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
AimsInflammation may have an important role in the beginning and in the progress of cardiovascular diseases. Testosterone exerts important effects on vascular function, which is altered in arterial hypertension. Thus, the aim of this study was to evaluate the influence of endogenous testosterone on leukocyte behavior in post-capillary venules of the mesenteric bed of spontaneously hypertensive rats (SHR).Main methods18 week-old intact SHR, castrated SHR and normotensive rats (intact Wistar) were used. Blood pressure was measured by tail plethysmography and serum testosterone levels by ELISA. Leukocyte rolling, adhesion and migration were evaluated in vivo in situ by intravital microscopy.Key findingsCastration significantly reduced blood pressure and reversed the increased leukocyte rolling and adhesion observed in SHRs. Leukocyte counts and other hemodynamic parameters did not differ among groups. SHRs displayed increased protein expression of P-selectin and ICAM-1 in mesenteric venules when compared to intact Wistar. Castration of SHRs restored the protein expression of the cell adhesion molecules.SignificanceThe findings of the present study demonstrate the critical role of endogenous testosterone mediating the effects of hypertension increasing leukocyte–endothelial cell interaction. Increased expression of cell adhesion molecules contribute to the effects of endogenous testosterone promoting increased leukocyte rolling and adhesion in SHRs.  相似文献   

5.
Recruitment of circulating leukocytes into the colonic tissue is a key feature of intestinal inflammation. P-selectin glycoprotein ligand-1 (PSGL-1) and very late antigen-4 (VLA-4) are expressed on leukocytes and play an important role in leukocyte-endothelial cell adhesive interactions. We examined the effects of immunoneutralization of PSGL-1 and VLA-4 on leukocyte recruitment in vivo in the development and treatment of experimental colitis. Chronic colitis was induced in balb/c mice by oral administration of dextran sodium sulfate (DSS). Monoclonal antibodies 2PH1 (anti-PSGL-1) and PS/2 (anti-VLA-4) or the combination of both were injected intravenously, and leukocyte adhesion was observed for 60 min in colonic submucosal venules by intravital microscopy (IVM) under isoflurane/N(2)O anesthesia. In addition, mice with established colitis were treated by daily intraperitoneal injections of 2PH1, PS/2, or the combination of both over 5 days. Disease activity index (DAI), histology, and myeloperoxidase (MPO) levels were compared with sham-treated DSS controls. We found that 2PH1 reduced the number of rolling leukocytes (148.7 +/- 29.8 vs. 36.9 +/- 8.7/0.01 mm(2)/30 s, P < 0.05), whereas leukocyte velocity was increased (24.0 +/- 3.6 vs. 127.8 +/- 11.7 microm/s, P < 0.05). PS/2 reduced leukocyte rolling to a lesser extent. Leukocyte firm adhesion was not influenced by 2PH1 but was strongly reduced by PS/2 (24.1 +/- 2 vs. 4.4 +/- 0.9/0.01 mm(2)/30 s, P < 0.05). Combined application did not cause additional effects on leukocyte adhesion. Treatment of chronic colitis with 2PH1 or PS/2 reduced DAI, mucosal injury, and MPO levels significantly. Combined treatment led to a significantly better reduction of DAI (0.4 +/- 0.1 vs. 2.1 +/- 0.2 points) and histology (9.7 +/- 0.9 vs. 21.4 +/- 4.6 points). In conclusion, PSGL-1 and VLA-4 play an important role for leukocyte recruitment during intestinal inflammation. Therapeutic strategies designed to disrupt interactions mediated by PSGL-1 and/or VLA-4 may prove beneficial in treatment of chronic colitis.  相似文献   

6.
The selectin family of adhesion molecules mediates the initial interactions of leukocytes with endothelium. The extracellular region of each selectin contains an amino-terminal C-type lectin domain, followed by an EGF-like domain and multiple short consensus repeat units (SCR). Previous studies have indirectly suggested a role for each of the extracellular domains of the selectins in cell adhesion. In this study, a panel of chimeric selectins created by exchange of domains between L- and P-selectin was used to directly examine the role of the extracellular domains in cell adhesion. Exchange of only the lectin domains between L- and P-selectin conferred the adhesive and ligand recognition functions of the lectin domain of the parent molecule. However, chimeric selectins which contained both the lectin domain of L- selectin and the EGF-like domain of P-selectin exhibited dual ligand- binding specificity. These chimeric proteins supported adhesion both to myeloid cells and to high endothelial venules (HEV) of lymph nodes and mesenteric venules in vivo. Exchange of the SCR domains had no detectable effect on receptor function or specificity. Thus, the EGF- like domain of P-selectin may play a direct role in ligand recognition and leukocyte adhesion mediated by P-selectin, with the lectin plus EGF- like domains collectively forming a functional ligand recognition unit.  相似文献   

7.
Altered leukocyte/cytokine response to inflammation has been observed in human and experimental portal hypertension. The aim of this study was to characterize leukocyte adhesion in portal hypertensive (PPVL) rats stimulated with endotoxin. Leukocyte rolling, adhesion, and migration assessed by intravital microscopy were impaired in mesenteric venules after lipopolysaccharide administration (150 microg/kg) in PPVL vs. sham-operated rats. Analysis of leukocyte L-selectin expression and soluble L-selectin showed that this defective adhesion was related to increased L-selectin shedding. In vitro experiments using isolated leukocytes treated with phorbol 12-myristate 13-acetate showed that monocytes and neutrophils but not lymphocytes were hyperreactive to cell activation, as measured by CD11b overexpression and increased L-selectin shedding in PPVL rats. However, neutrophil emigration in liver sinusoids and in the lung 3 h after endotoxin injection were similar in both groups of animals. Thus the alterations in leukocyte activation and adhesion molecule expression observed in this study may contribute to a better understanding of the higher susceptibility and severity of bacterial infections in cirrhotic patients with portal hypertension.  相似文献   

8.
Physiological actions of insulin via activation of the phosphatidylinositol 3-kinase/Akt pathway in the endothelium serve to couple regulation of hemodynamic and metabolic homeostasis. Insulin resistance, endothelial dysfunction, and hypertension increase in prevalence with aging. We investigated the metabolic and endothelial actions of insulin in 24- vs. 3-mo Sprague-Dawley rats. With the use of the hyperinsulinemic euglycemic clamp, the rate of glucose infusion necessary to maintain equivalent plasma glucose (5.5 mmol/l) was similar in 24- vs. 3-mo rats, as was fasting glucose (5.2 +/- 0.33 vs. 4.4 +/- 0.37 mmol/l; mean +/- SE) and insulin (0.862 +/- 0.193 vs. 1.307 +/- 0.230 mg/l). Systolic blood pressure was higher in 24-mo rats (133 +/- 5 vs. 110 +/- 4 mmHg; P = 0.005). Endothelial nitric oxide (NO)-dependent relaxation to insulin was impaired in aortas of 24- vs. 3-mo rats (maximal response 8.9 +/- 4.3 vs. 34.9 +/- 3.9%; P = 0.002); N(G)-nitro-l-arginine methyl ester abolished insulin-mediated relaxation in 3- but not 24-mo rats. Endothelium NO-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation, as well as NADPH oxidase activity, were similar in 3- and 24-mo rats. Insulin increased aortic serine phosphorylation of Akt in 3-mo rats by 120% over 24-mo rats (P < 0.05) and serine phosphorylation of endothelial NO synthase (eNOS) in 3-mo rats by 380% over 24-mo rats (P < 0.05). Aortic expression of phosphorylated c-Jun NH(2)-terminal kinase-1 and serine phosphorylated insulin receptor substrate-1, known mediators of metabolic insulin resistance, was similar in 3- and 24-mo rats. Expression of caveolin-1, a regulator of eNOS activity and insulin signaling, was 55% lower in 24- than 3-mo rats (P = 0.002). In summary, impaired vasorelaxation to insulin in aging was independent of metabolic insulin sensitivity and associated with impaired insulin-mediated activation of the Akt/eNOS pathway, but intact activation of the acetylcholine-mediated Ca(2+)-calmodulin/eNOS pathway. Vascular insulin resistance in aging may add to the increased susceptibility of this population to vascular injury induced by traditional cardiovascular risk factors.  相似文献   

9.
Intravital microscopic techniques were used to examine the mechanisms underlying bradykinin-induced leukocyte/endothelial cell adhesive interactions (LECA) and venular protein leakage (VPL) in single postcapillary venules of the rat mesentery. The effects of bradykinin superfusion to increase LECA and VPL were prevented by coincident topical application of either a bradykinin-B(2) receptor antagonist, a cell-permeant superoxide dismutase (SOD) mimetic or antioxidant, or inhibitors of cytochrome P-450 epoxygenase (CYPE) or protein kinase C (PKC) but not by concomitant treatment with either SOD, a mast cell stabilizer, or inhibitors of nitric oxide synthase, cyclooxygenase, xanthine oxidase, NADPH oxidase, or platelet-activating factor. Immunoneutralizing P-selectin or intercellular adhesion molecule-1 (ICAM-1) completely prevented bradykinin-induced leukocyte adhesion and emigration but did not affect VPL. On the other hand, stabilization of F-actin with phalloidin prevented bradykinin-induced leukocyte emigration and VPL but did not alter leukocyte adhesion. These data indicate that bradykinin induces LECA in rat mesenteric venules via a B(2)-receptor-initiated, CYPE-, oxidant- and PKC-mediated, P-selectin- and ICAM-1-dependent mechanism. Bradykinin also produced VPL, an effect that was initiated by stimulation of B(2) receptors and involved CYPE and PKC activation, oxidant generation, and cytoskeletal reorganization but was independent of leukocyte adherence and emigration.  相似文献   

10.
A recently identified lectin-like oxidized low-density lipoprotein receptor (LOX-1) mediates endothelial cell injury and facilitates inflammatory cell adhesion. We studied the role of LOX-1 in myocardial ischemia-reperfusion (I/R) injury. Anesthetized Sprague-Dawley rats were subjected to 60 min of left coronary artery (LCA) ligation, followed by 60 min of reperfusion. Rats were treated with saline, LOX-1 blocking antibody JXT21 (10 mg/kg), or nonspecific anti-goat IgG (10 mg/kg) before I/R. Ten other rats underwent surgery without LCA ligation and served as a sham control group. LOX-1 expression was markedly increased during I/R (P < 0.01 vs. sham control group). Simultaneously, the expression of matrix metalloproteinase-1 (MMP-1) and adhesion molecules (P-selectin, VCAM-1, and ICAM-1) was also increased in the I/R area (P < 0.01 vs. sham control group). There was intense leukocyte accumulation in the I/R area in the saline-treated group. Treatment of rats with the LOX-1 antibody prevented I/R-induced upregulation of LOX-1 and reduced MMP-1 and adhesion molecule expression as well as leukocyte recruitment. LOX-1 antibody, but not nonspecific IgG, also reduced myocardial infarct size (P < 0.01 vs. saline-treated I/R group). To explore the link between LOX-1 and adhesion molecule expression, we measured expression of oxidative stress-sensitive p38 mitogen-activated protein kinase (p38 MAPK). The activity of p38 MAPK was increased during I/R (P < 0.01 vs. sham control), and use of LOX-1 antibody inhibited p38 MAPK activation (P < 0.01). These findings indicate that myocardial I/R upregulates LOX-1 expression, which through p38 MAPK activation increases the expression of MMP-1 and adhesion molecules. Inhibition of LOX-1 exerts an important protective effect against myocardial I/R injury.  相似文献   

11.
Antecedent insulin-induced hypoglycemia (IIH) reduces adrenomedullary responses (AMR) to subsequent bouts of hypoglycemia. The ventromedial hypothalamus [VMH: arcuate (ARC) + ventromedial nuclei] contains glucosensing neurons, which are thought to be mediators of these AMR. Since type 1 diabetes mellitus often begins in childhood, we used juvenile (4- to 5-wk-old) rats to demonstrate that a single bout of IIH (5 U/kg sc) reduced plasma glucose by 24% and peak epinephrine by 59% 1 day later. This dampened AMR was associated with 46% higher mRNA for VMH glucokinase, a key mediator of neuronal glucosensing. Compared with neurons from saline-injected rats, ventromedial nucleus glucose-excited neurons from insulin-injected rats demonstrated a leftward shift in their glucose responsiveness (EC50 = 0.45 and 0.10 mmol/l for saline and insulin, respectively, P = 0.05) and a 31% higher maximal activation by glucose (P = 0.05), although this maximum occurred at a higher glucose concentration (saline, 0.7 vs. insulin, 1.5 mmol/l). Although EC50 values did not differ, ARC glucose-excited neurons had 19% higher maximal activation, which occurred at a lower glucose concentration in insulin- than saline-injected rats (saline, 2.5 vs. insulin, 1.5 mmol/l). In addition, ARC glucose-inhibited neurons from insulin-injected rats were maximally inhibited at a fivefold lower glucose concentration (saline, 2.5 vs. insulin, 0.5 mmol/l), although this inhibition declined at >0.5 mmol/l glucose. These data suggest that the increased VMH glucokinase after IIH may contribute to the increased responsiveness of VMH glucosensing neurons to glucose and the associated blunting of the AMR.  相似文献   

12.
We previously demonstrated in intact house sparrows substantial absorption in vivo of L-glucose, the stereoisomer of D-glucose that is assumed not to interact with the intestines D-glucose transporter. Results of some studies challenge this assumption for other species. Therefore, we tested it in vitro and in vivo, based on the principle that if absorption of a compound (L-glucose) is mediated, then absorption of its tracer will be competitively inhibited by high concentrations of either the compound itself or other compounds (e.g., D-glucose) whose absorption is mediated by the same mechanism. An alternative hypothesis that L-glucose absorption is primarily paracellular predicts that its absorption in vivo will be increased (not decreased) in the presence of D-glucose, because the permeability of this pathway is supposedly enhanced when Na+-coupled glucose absorption occurs. First, using intact tissue in vitro, we found that uptake of tracer-radiolabeled L-glucose was not significantly inhibited by high concentrations (100 mM) of either L-glucose or 3-O-methyl-D-glucose, a non-metabolizable but actively transported D-glucose analogue. Second, using intact house sparrows, we found that fractional absorption of the L-glucose tracer was significantly increased, not reduced, when gavaged along with 200 mM 3-O-methyl-D-glucose. This result was confirmed in another experiment where L-glucose fractional absorption was significantly higher in the presence vs. absence of food in the gut. The greater absorption was apparently not due simply to longer retention time of digesta, because no significant difference was found among retention times. Our results are consistent with the idea that L-glucose is absorbed in a non-mediated fashion, largely via the paracellular pathway in vivo.Abbreviations AUC area under the curve - 3OMD-glucose 3-O-methyl-D-glucose Communicated by I.D. Hume  相似文献   

13.
Whereas the adhesion of leukocytes and erythrocytes to vascular endothelium has been implicated in the vasooclusive events associated with sickle cell disease, the role of platelet-vessel wall interactions in this process remains undefined. The objectives of this study were to: 1) determine whether the adhesion of platelets and leukocytes in cerebral venules differs between sickle cell transgenic (betaS) mice and their wild-type (WT) counterparts (C57Bl/6) under both resting and posthypoxic conditions, and 2) define the contributions of P-selectin to these adhesion processes. Animals were anesthetized, and platelet and leukocyte interactions with endothelial cells of cerebral postcapillary venules were monitored and quantified using intravital fluorescence microscopy in WT, betaS, and chimeric mice produced by transplanting bone marrow from WT or betaS mice into WT or P-selectin-deficient (P-sel(-/-)) mice. Platelet and leukocyte adhesion to endothelial cells in both unstimulated and posthypoxic betaS mice were significantly elevated over WT levels. Chimeric mice involving bone marrow transfer from betaS mice to P-sel(-/-) mice exhibited a profound attenuation of both platelet and leukocyte adhesion compared with betaS bone marrow transfer to WT mice. These findings indicate that betaS mice assume both an inflammatory and prothrombogenic phenotype, with endothelial cell P-selectin playing a major role in mediating these microvascular responses.  相似文献   

14.
We have studied the effect of insulin hypoglycemia on the secretion of pancreatic polypeptide (PP) in 14 obese subjects with normal glucose tolerance and in 6 normal controls. Infusion of insulin 0.1 U/kg/h in controls and 0.12 U/kg/h in the obese, for one hour, produced a progressive hypoglycemia, similar in both groups (nadir 2 mmol/l at 50 min). The secretion of PP was less in obese subjects than in controls (peak 116 mmol/l vs 184 pmol/l, P less than 0.01) (integrated secretion sigma delta PP 288 vs 472 pmol/l, P less than 0.01) and was also delayed in the obese subjects beginning at 50 min instead of 40 min. The secretion of glucagon and of C-peptide were not different in the two groups, but the integrated response of ACTH was higher in the obese (sigma delta ACTH 52 pmol/l vs 25 pmol/l, P less than 0.01). The secretory response of growth hormone (STH) was smaller in the obese group (peak 8.6 +/- 1.28 vs 21.4 +/- 6.4 ng/ml, P less than 0.01). The reduced secretion of PP in obese subjects could be due to impaired sensitivity to hypoglycemia of the central control mechanism for PP release. The similarity of the reductions in the secretion of both PP and STH support this hypothesis, although a reduction in the secretory capacity of pancreatic PP cells cannot be excluded.  相似文献   

15.
It is commonly accepted that thrombin exerts its proinflammatory properties through the activation of proteinase-activated receptor (PAR)-1, although two other thrombin receptors have been discovered: PAR-3 and PAR-4. In this study, we have investigated the mechanisms and the receptors involved in thrombin-induced leukocyte/endothelial cell interactions by using selective agonists and antagonists of thrombin receptors in an in vivo intravital microscopy system. Topical addition of selective PAR-1 agonists to rat mesenteric venules failed to reproduce the increased leukocyte rolling and adhesion observed after thrombin topical addition. When added together with the selective PAR-1 antagonist RWJ-56110, thrombin was still able to provoke increased leukocyte rolling and adherence. The thrombin-induced leukocyte rolling and adherence was not affected by pretreatment of rats with an anti-platelet serum. Selective PAR-4-activating peptide was able to reproduce the effects of thrombin on leukocyte rolling and adhesion. Intraperitoneal injection of PAR-4-activating peptide also caused a significant increase in leukocyte migration into the peritoneal cavity. In rat tissues, PAR-4 expression was detected both on endothelium and isolated leukocytes. Taken together, these results showed that in rat mesenteric venules, thrombin exerts proinflammatory properties inducing leukocyte rolling and adherence, by a mechanism independent of PAR-1 activation or platelet activation. However, PAR-4 activation either on endothelial cells or on leukocytes might be responsible for the thrombin-induced effects. These findings suggest that PAR-4 activation could contribute to several early events in the inflammatory reaction, including leukocyte rolling, adherence and recruitment, and that in addition to PAR-1, PAR-4 could be involved in proinflammatory properties of thrombin.  相似文献   

16.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

17.
目的:研究高糖诱导的内皮细胞损伤微小RNA(microRNA,miRNA)的表达变化。方法:常规培养的人冠状动脉内皮细胞,利用不同浓度D-葡萄糖溶液(0 mmol/L、5 mmol/L、15 mmol/L和25 mmol/L),诱导刺激24 h后分别用CCK-8法和流式细胞术检测其生长活力和凋亡水平。收集细胞总RNA,利用实时定量PCR(Quantitative real-time PCR,q RT-PCR)检测miRNA的表达变化,同时利用TargetScan、PicTar等生物信息学预测软件预测可能的靶基因。结果:高糖溶液(25 mmol/L)刺激内皮细胞后,细胞生长活力明显降低,为对照组的67.5%(P0.01),凋亡水平为对照组的4.5倍(P0.01)。QRT-PCR结果显示miRNA的表达出现了明显的紊乱,其中miR-451、miR-504、miR-302d、miR-18b*、miR-198、miR-328和miR-517c明显下调,miR-29c、miR-100*、miR-137、miR-660和miR-217明显上调(P0.05)。靶基因预测发现miR-217和miR-451可能调控内皮细胞功能相关的多个基因的表达。结论:在高糖诱导的内皮细胞损伤中,miRNA表达紊乱提示其可能参与内皮细胞功能。  相似文献   

18.
To examine the existence of pressure equilibrium between tributary veins and the central vena cava during the mean circulatory filling pressure manoeuvre, pressures in the hepatic portal vein, renal vein, and inferior vena cava were determined at 4-s intervals over a 20-s period of circulatory arrest induced by inflating a right atrial balloon in normal blood volume, 10% volume depletion, and 10% volume expansion states in urethane-anaesthetized rats. Portal vein pressure determined 8 s after arrest during volume depletion and expansion was significantly higher than vena caval pressure (6.2 +/- 0.8 vs. 3.4 +/- 0.2 and 7.7 +/- 0.5 vs. 6.2 +/- 0.4 mmHg (1 mmHg = 133.32 Pa), respectively; p less than 0.01); this pressure disequilibrium continued for 16 s during volume expansion and for the entire 20 s during volume depletion. Renal vein pressure was equal to vena caval pressure during this manoeuvre. Portal vein pressure at normal blood volume was not significantly different from vena caval pressure following circulatory arrest (4.6 +/- 0.3 vs. 3.8 +/- 0.4 mmHg, respectively). Following ganglionic blockade, portal vein pressure was still significantly higher than vena caval pressure for 12 s during volume alterations. At the 8th s of the arrest the portal pressure determined in volume depletion was 3.6 +/- 0.3 mmHg and the inferior vena caval pressure was 2.6 +/- 0.4 mmHg (p less than 0.05). Under the volume expansion condition, the respective values were 6.5 +/- 0.3 and 5.3 +/- 0.4 mmHg (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We previously have shown in mice and rats, enhanced leukocyte recruitment to airway postcapillary venules after excessive distention imposed by the application of positive end-expiratory pressure. Because P-selectin was shown to be essential for this outcome, we sought to establish an in vitro endothelial cell model and determine the mechanisms whereby mechanical distension alters adhesion molecule expression. P-selectin surface expression on mouse jugular vein endothelial cells exposed to cyclic stretch (5 or 20% elongation for 5 min; Flexercell) were compared with static cells. The larger, pathophysiological regimen of cyclic stretch showed a 54% increase in P-selectin expression after stretch compared with static cells. This response was attenuated but confirmed in tracheal venular endothelium (29% increase). We questioned whether these changes were dependent on increases in intracellular Ca(2+) through voltage-gated Ca(2+) channels. The stretch-induced increase in P-selectin expression was substantially decreased by pretreatment with the T-type Ca(2+) channel inhibitor mibefradil (76% inhibition). Furthermore, when the Ca(v)3.1 T-type Ca(2+) channel expression was decreased in both endothelial cell subtypes with specific small-interfering RNA, the distension-induced expression of P-selectin decreased to levels less than that observed in static cells. We conclude that P-selectin expression on systemic venular endothelial cells contributes to a proinflammatory phenotype after mechanical stretch and can be selectively modulated by voltage-gated calcium channel inhibition.  相似文献   

20.
将SD大鼠分组 ,先制作空肠袋 ,分别向袋内注射不同营养物 :10mmol/L丙氨酸 ,10mmol/L葡萄糖 ,10mmol/L甘露醇或 5mmol/L丙氨酸 +5mmol/L葡萄糖的混合液 ,用动脉夹阻断肠系膜上动脉血流 6 0min后 ,再恢复灌流 6 0min。分别于阻断血流 6 0min和恢复灌注 6 0min测定肠粘膜ATP含量。研究结果显示 ,缺血再灌注能显著降低肠粘膜ATP含量 ,给予丙氨酸或葡萄糖 /丙氨酸混合液使肠粘膜ATP含量进一步降低 (P <0 .0 1) ,而给予葡萄糖能显著增加肠粘膜ATP含量 (P <0 .0 1)。结论 :缺血再灌注过程中 ,肠内给予葡萄糖能改善肠粘膜ATP含量 ,对缺血再灌注损伤的肠道提供保护作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号