首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The transition from vegetative to reproductive growth is a key event in the plant life cycle. Plants therefore use a variety of environmental and endogenous signals to determine the optimal time for flowering to ensure reproductive success. These signals are integrated at the shoot apical meristem (SAM), which subsequently undergoes a shift in identity and begins producing flowers rather than leaves, while still maintaining pluripotency and meristematic function. Gibberellic acid (GA), an important hormone associated with cell growth and differentiation, has been shown to promote flowering in many plant species including Arabidopsis thaliana, but the details of how spatial and temporal regulation of GAs in the SAM contribute to floral transition are poorly understood. In this study, we show that the gene GIBBERELLIC ACID METHYLTRANSFERASE 2 (GAMT2), which encodes a GA-inactivating enzyme, is significantly upregulated at the SAM during floral transition and contributes to the regulation of flowering time. Loss of GAMT2 function leads to early flowering, whereas transgenic misexpression of GAMT2 in specific regions around the SAM delays flowering. We also found that GAMT2 expression is independent of the key floral regulator LEAFY but is strongly increased by the application of exogenous GA. Our results indicate that GAMT2 is a repressor of flowering that may act as a buffer of GA levels at the SAM to help prevent premature flowering.  相似文献   

8.
FPF1 modulates the competence to flowering in Arabidopsis   总被引:6,自引:0,他引:6  
During the transition to flowing the FPF1 gene is expressed in the peripheral zone of apical meristems and in floral meristems of Arabidopsis. Constitutive expression of FPF1 causes early flowering in Arabidopsis under both long-day and short-day conditions and leads to a shortened juvenile phase as measured by the trichome distribution on the abaxial leaf surface. In the classical late flowering mutants, overexpression of FPF1 compensates partially for the late flowering phenotype, indicating that FPF1 acts downstream or in a parallel pathway to the mutated genes. The co-overexpression of 35S::AP1 with 35S::FPF1 leads to a synergistic effect on the shortening of the time to flowering under short-day conditions. The co-overexpression of 35S::FPF1 and 35S::LFY, however, shows only an additive reduction of flowering time and the conversion of nearly every shoot meristem, except the inflorescence meristem, to a floral meristem under the same light conditions. In addition, the constitutive expression of FPF1 attenuates the severe lfy-1 phenotype under short days and phenocopies to a great extent the lfy-1 mutant grown under long-day conditions. Thus, we assume that FPF1 modulates the competence to flowering of apical meristems.  相似文献   

9.
ALBINO3, a homologue of PPF1 in Arabidopsis, encodes a chloroplast protein, and is essential for chloroplast differentiation. In the present study, ALBINO3(−) transgenic plants exhibited a significant decrease in both the number of rosette leaves at bolting and the days before bolting, suggesting the important roles of ALBINO3 in regulating flowering during non-inductive short-day photoperiods. ALBINO3 mRNA was apparently accumulated in shoot apical meristem and floral meristems around the shoot apical meristem in wild-type plants. ALBINO3 might be predominantly involved in inducing the floral repression pathway by activating the expression of TFL1, and by suppressing the expression of LFY, respectively, in the shoot apical meristem. Moreover, the function of ALBINO3 in regulating flowering transition depended on the expression of CO and GA1, because ALBINO3 might function in the downstream integration of the photoperiod-dependent and the photoperiod-independent pathways. These results suggest that ALBINO3 may have an important integrative function in the flowering process in Arabidopsis.  相似文献   

10.
The transition from vegetative to reproductive development establishes new growth patterns required for flowering. This switch is controlled by environmental and/or intrinsic developmental cues that converge at the shoot apical meristem (SAM). During this developmental transition, floral inductive signals cause the vegetative meristem to undergo morphological changes that are essential for flowering. Arabidopsis plants containing null mutations in two paralogous BEL1-like (BELL) homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), disrupt the transition from vegetative to reproductive development. These double mutants are completely unable to flower even though the SAM displays morphological and molecular changes that are consistent with having received floral inductive signals. These studies establish a link between the competence to receive floral inductive signals and restructuring of the SAM during floral evocation.  相似文献   

11.
Yu H  Yang SH  Goh CJ 《The Plant cell》2000,12(11):2143-2160
We report here the isolation and identification of an orchid homeobox gene, DOH1, from Dendrobium Madame Thong-In. Analyses of its sequence and genomic organization suggest that DOH1 may be the only class 1 knox gene in the genome. DOH1 mRNA accumulates in meristem-rich tissues, and its expression is greatly downregulated during floral transition. In situ hybridization analysis demonstrates that DOH1 is also expressed in the incipient leaf primordia and is later detected in the same region of the inflorescence apex, as in DOMADS1. Overexpression of DOH1 in orchid plants completely suppresses shoot organization and development. Transgenic orchid plants expressing antisense mRNA for DOH1 show multiple shoot apical meristem (SAM) formations and early flowering. In addition, both the sense and antisense transformants exhibit defects in leaf development. These findings suggest that DOH1 plays a key role in maintaining the basic plant architecture of orchid through control of the formation and development of the SAM and shoot structure. Investigations of DOMADS1 expression in the SAM during floral transition reveal that the precocious flowering phenotype exhibited by DOH1 antisense transformants is coupled with the early onset of DOMADS1 expression. This fact, together with the reciprocal expression of DOH1 and DOMADS1 during floral transition, indicates that downregulation of DOH1 in the SAM is required for floral transition in orchid and that DOH1 is a possible upstream regulator of DOMADS1.  相似文献   

12.
13.
The quest for florigen: a review of recent progress   总被引:19,自引:0,他引:19  
The photoperiodic induction of flowering is a systemic process requiring translocation of a floral stimulus from the leaves to the shoot apical meristem. In response to this stimulus, the apical meristem stops producing leaves to initiate floral development; this switch in morphogenesis involves a change in the identity of the primordia initiated and in phyllotaxis. The physiological study of the floral transition has led to the identification of several putative floral signals such as sucrose, cytokinins, gibberellins, and reduced N-compounds that are translocated in the phloem sap from leaves to the shoot apical meristem. On the other hand, the genetic approach developed more recently in Arabidopsis thaliana allowed the discovery of many genes that control flowering time. These genes function in 'cascades' within four promotive pathways, the 'photoperiodic', 'autonomous', 'vernalization', and 'gibberellin' pathways, which all converge on the 'integrator' genes SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT). Recently, several studies have highlighted a role for a product of FT as a component of the floral stimulus or 'florigen'. These recent advances and the proposed mode of action of FT are discussed here.  相似文献   

14.
15.
In Sinapis alba , a long-day plant (LDP) which can be induced by a single long day (LD), it has been suggested that cytokinins may be part of a multicomponent floral stimulus. In order to determine cytokinin fluxes during floral transition, we developed a technique to collect phloem sap reaching the apical part of the shoot, close to the target bud. Exudates collected from roots, leaves, and the apical part of the shoot were analysed by radioimmunoassay for cytokinins. Such analyses confirm previous observations, obtained using the Amaranthus bioassay. indicating thai cytokinin export from the roots and mature leaves is enhanced 2–5 fold during floral transition. The flux of cytokinins directed to the upper part of the shoot through the phloem is also rapidly increased (ca 1.5–2 fold) by the inductive treatment, between 9 and 25 h after start of the LD. We suggested that the shoot apical merislem of 2-month-old Sinapis plants probably has a low cytokinin level. Induced leaves rapidly produce a signal which is transported to the roots where it alters cytokinin production and/or export. In addition, or as a consequence, leaf-cytokinins are exported via the phloem to the apical meristem where they induce a mitotic peak and some other events normally associated with the floral transition.  相似文献   

16.
Growth correlations in the shoot apical meristem during transition to flowering were studied in a quantitative long day plant,Brassica campestris L. cv. Ceres, requiring only one long day for floral initiation. During photo-inductive exposure of the plants, an overall increase in cell number could be observed at the shoot apex concomitant with promotion of leaf initiation. Release from apical dominance and decline in relative growth rate of leaf primordia are reported as early effects of photo-induction. With the onset of floral differentiation, production of new leaf primordia had stopped altogether. Maximum increase in RNA concentration could be noticed in axillary meristems following photoperiodic treatment, whereas in vegetative plants the highest RNA concentration was found in leaf primordia. The significance of these changes occurring during transition to flowering is discussed.  相似文献   

17.
G2 pea exhibits an apical senescence delaying phenotype under short-day (SD) conditions; however, the structural basis for its apical development is still largely unknown. In the present study, the apical meristem of SD-grown G2 pea plants underwent a transition from vegetative to indeterminate inflorescence meristem, but the apical meristem of long-day (LD)-grown G2 pea plants would be further converted to determinate floral meristem. Both SD signal and GA3 treatment enhanced expression of the putative calcium transporter PPF1, and pea homologs of TFL1 (LF and DET), whereas LD signal suppressed their expression at 60 d post-flowering compared with those at 40 d post-flowering. Both PPF1 and LF expressed at the vegetative and reproductive phases in SD-grown apical buds, but floral initiation obviously increased the expression level of PPF1 compared with the unchanged expression level of LF from 40 to 60 d post-flowering. In addition, although the floral initiation significantly enhanced the expression levels of PPF1 and DET, DET was mainly expressed after floral initiation in SD-grown apical buds. Therefore, the main structural difference between LD- and SD-grown apical meristem in G2 pea lies in whether their apical indeterminate inflorescence medstem could be converted to the determinate structure.  相似文献   

18.
Separation of the life cycle of flowering plants into two distinct growth phases, vegetative and reproductive, is marked by the floral transition. The initial floral inductive signals are perceived in the leaves and transmitted to the shoot apex, where the vegetative shoot apical meristem is restructured into a reproductive meristem. In this study, we report cloning and characterization of the maize (Zea mays) flowering time gene delayed flowering1 (dlf1). Loss of dlf1 function results in late flowering, indicating dlf1 is required for timely promotion of the floral transition. dlf1 encodes a protein with a basic leucine zipper domain belonging to an evolutionarily conserved family. Three-dimensional protein modeling of a missense mutation within the basic domain suggests DLF1 protein functions through DNA binding. The spatial and temporal expression pattern of dlf1 indicates a threshold level of dlf1 is required in the shoot apex for proper timing of the floral transition. Double mutant analysis of dlf1 and indeterminate1 (id1), another late flowering mutation, places dlf1 downstream of id1 function and suggests dlf1 mediates floral inductive signals transmitted from leaves to the shoot apex. This study establishes an emergent framework for the genetic control of floral induction in maize and highlights the conserved topology of the floral transition network in flowering plants.  相似文献   

19.
20.
Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号