首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clock(δ19)+MEL mutant mice, which retain melatonin rhythmicity, but lack peripheral tissue rhythmicity have impaired glucose tolerance, but reduced plasma free fatty acids, increased plasma adiponectin, and improved insulin sensitivity. Here, we report their response to a high-fat diet and adipocyte rhythmicity and function. The diet increased epigonadal fat weight similarly (twofold) in both wild-type and Clock(δ19)+MEL mice. The Clock(δ19) mutation abolished rhythmicity of Per2, Rev erbα and peroxisome proliferator-activated receptor-γ (Pparγ ) mRNA in epigonadal fat, but not Bmal1 mRNA, and reduced Rev erbα mRNA by 59 and 70% compared to the wild-type mice on the control and high-fat diets, respectively. The mutants had increased Adipoq mRNA expression in epigonadal fat (22%; P < 0.05) on a control diet, but showed no further change on a high-fat diet, and no change in Lep, Nampt or Retn mRNA on either diet. The Clock(δ19) mutation abolished rhythmicity of genes in epigonadal fat that contribute to plasma free fatty acids for mice on both diets, and increased Lipe mRNA expression in those on the high-fat diet. The persistent melatonin rhythm and reduced plasma free fatty acids in Clock(δ19)+MEL mutants may contribute to their enhanced insulin sensitivity, ameliorate the extent of impaired glucose homeostasis, and protect against the adverse effects of a high-fat diet.  相似文献   

2.
3.
Objective: This study was designed to test whether adiponectin plays a role in diet‐induced obesity and insulin resistance and acts as a mediator to induce or inhibit specific metabolic pathways involved in lipid metabolism Research Methods and Procedures: Forty C57BL/6J male mice were fed either a high‐fat (HF) or control diet for 4 months, and adiponectin, its receptors, and enzyme expression in liver and muscle tissue were measured. Results: Mice fed the HF diet exhibited significantly greater weight gain, abnormal oral glucose tolerance test curves, and elevated homeostasis model assessment of insulin resistance (5.3 ± 0.89 vs. 2.8 ± 0.39). A significant reduction of adiponectin RNA expression (51%) and protein levels (15%) was observed in the adipose tissue of HF animals; however, serum adiponectin levels did not differ between groups (7.12 ± 0.34 μg/mL vs. 6.44 ± 0.38 μg/mL). Expression of hepatic mRNA of AdipoR1 and AdipoR2 was reduced by 15% and 25%, respectively, in animals fed the HF diet. In contrast, receptor mRNA expression of AdipoR1 and AdipoR2 increased by 25% and 30%, respectively, in muscle tissue. No effect was found on hepatic adenosine monophosphate‐activated protein kinase expression; however, a significant reduction of phosphoadenosine monophosphate kinase levels in muscles was observed. Hepatic acetyl‐coenzyme A carboxylase was similar between groups, but in muscles, the inactive form phosphoacetyl‐coenzyme A carboxylase was significantly reduced (p < 0.05). Discussion: The HF diet led to decreased insulin sensitivity accompanied by impaired activity of adiponectin‐related enzymes in skeletal muscles but not in the liver. These results suggest that the HF diet has a tissue‐specific effect on adiponectin and associated enzyme expression.  相似文献   

4.
Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.  相似文献   

5.
Adiponectin is a well described anti-inflammatory adipokine that is highly abundant in serum. Previous reports have found that adiponectin deficiency promotes cardiovascular and metabolic dysfunction in murine models, whereas its overexpression is protective. Two candidate adiponectin receptors, AdipoR1 and AdipoR2, are uncharacterized with regard to cardiovascular tissue homeostasis, and their in vivo metabolic functions remain controversial. Here we subjected AdipoR1- and AdipoR2-deficient mice to chronic hind limb ischemic surgery. Blood flow recovery in AdipoR1-deficient mice was similar to wild-type; however, revascularization in AdipoR2-deficient mice was severely attenuated. Treatment with adiponectin enhanced the recovery of wild-type mice but failed to rescue the impairment observed in AdipoR2-deficient mice. In view of this divergent receptor function in the hind limb ischemia model, AdipoR1- and AdipoR2-deficient mice were also evaluated in a model of diet-induced obesity. Strikingly, AdipoR1-deficient mice developed severe metabolic dysfunction compared with wild type, whereas AdipoR2-deficient mice were protected from diet-induced weight gain and metabolic perturbations. These data show that AdipoR2, but not AdipoR1, is functionally important in an in vivo model of ischemia-induced revascularization and that its expression is essential for the revascularization actions of adiponectin. These data also show that, in contrast to revascularization responses, AdipoR1, but not AdipoR2 deficiency, leads to diet-induced metabolic dysfunction, revealing that these receptors have highly divergent roles in vascular and metabolic homeostasis.  相似文献   

6.
Adiponectin and its receptors play an important role in energy homeostasis and insulin resistance, but their regulation remains to be fully elucidated. We hypothesized that high-fat diet would decrease adiponectin but increase adiponectin receptor (AdipoR1 and AdipoR2) expression in diet-induced obesity (DIO)-prone C57BL/6J and DIO-resistant A/J mice. We found that circulating adiponectin and adiponectin expression in white adipose tissue are higher at baseline in C57BL/6J mice compared with A/J mice. Circulating adiponectin increases at 10 wk but decreases at 18 wk in response to advancing age and high-fat feeding. However, adiponectin levels corrected for visceral fat mass and adiponectin mRNA expression in WAT are affected by high-fat feeding only, with both being decreased after 10 wk in C57BL/6J mice. Muscle AdipoR1 expression in both C57BL/6J and A/J mice and liver adipoR1 expression in C57BL/6J mice increase at 18 wk of age. High-fat feeding increases both AdipoR1 and AdipoR2 expression in liver in both strains of mice and increases muscle AdipoR1 expression in C57BL/6J mice after 18 wk. Thus advanced age and high-fat feeding, both of which are factors that predispose humans to obesity and insulin resistance, are associated with decreasing adiponectin and increasing AdipoR1 and/or AdipoR2 levels.  相似文献   

7.
Obesity is associated with a higher incidence of thyroid cancer. Adiponectin is one of the most abundant adipokines with a pleiotropic role in metabolism and in the development and progression of cancer. It has been shown that circulating adiponectin level is inversely associated with the risk of thyroid cancer. This study aimed to investigate the possible association between the expression of adiponectin receptors (AdipoR1 and AdipoR2) and clinicopathological variables in papillary thyroid cancer. We found that protein levels of AdipoR1 and AdipoR2 were increased in some thyroid cancer specimens compared with adjacent normal thyroid tissues. Thyroid cancer cells expressed AdipoR1 and AdipoR2, which were attenuated by histone deacetylase inhibitors valproic acid and trichostatin A. Adiponectin stimulated AMP-activated protein kinase phosphorylation in thyroid cancer cells. We further determined the expression of AdipoR1 and AdipoR2 by immunohistochemical staining in primary tumor samples and metastatic lymph nodes. AdipoR1 was expressed in 27 % of primary tumors and AdipoR2 in 47 %. Negative expression of both adiponectin receptors was significantly associated with extrathyroidal invasion, multicentricity, and higher TNM stage. There was a trend toward decreased disease-free survival in patients with negative tumor expression of AdipoR1 and AdipoR2 (log-rank P = 0.051). Collectively, overexpression of adiponectin receptors was observed in some tumor tissues of papillary thyroid cancer and was associated with a better prognosis.  相似文献   

8.
Adiponectin, one of the insulin-sensitizing adipokines, has been shown to activate fatty acid oxidation in liver and skeletal muscle, thus maintaining insulin sensitivity. However, the precise roles of adiponectin in fatty acid synthesis are poorly understood. Here we show that adiponectin administration acutely suppresses expression of sterol regulatory element-binding protein (SREBP) 1c, the master regulator which controls and upregulates the enzymes involved in fatty acid synthesis, in the liver of +Leprdb/+Leprdb (db/db) mouse as well as in cultured hepatocytes. We also show that adiponectin suppresses SREBP1c by AdipoR1, one of the functional receptors for adiponetin, and furthermore that suppressing either AMP-activated protein kinase (AMPK) via its upstream kinase LKB1 deletion cancels the negative effect of adiponectin on SREBP1c expression. These data show that adiponectin suppresses SREBP1c through the AdipoR1/LKB1/AMPK pathway, and suggest a possible role for adiponectin in the regulation of hepatic fatty acid synthesis.  相似文献   

9.
Expression of adiponectin receptors in pancreatic beta cells   总被引:28,自引:0,他引:28  
Pancreatic beta cell dysfunction is an early and crucial pathogenic factor in the development of type 2 diabetes. Free fatty acids (FFA) and adipokines released from adipose tissues lead to both the development of insulin resistance and beta cell dysfunction. Adiponectin is a novel adipokine with antidiabetic properties. Its circulating concentrations are reduced in subjects with increased visceral adiposity, insulin resistance, or type 2 diabetes. Very recently, the cloning of two adiponectin receptors AdipoR1 and AdipoR2 was reported. AdipoR1 is abundantly expressed in muscle, while AdipoR2 is predominantly expressed in liver. Here we report the marked expression of mRNAs for the adiponectin receptors AdipoR1 and AdipoR2 in human and rat pancreatic beta cells, at levels similar to liver and greater than muscle. Adiponectin receptor expression is increased by beta cell exposure to the unsaturated FFA oleate, and treatment of insulin-producing cells with globular adiponectin induces lipoprotein lipase expression. Regulated adiponectin receptor expression on pancreatic beta cells might be a novel mechanism modulating the effects of circulating adiponectin.  相似文献   

10.
王芳  顾鸣敏  王铸钢 《生物磁学》2008,(8):1549-1552
脂联素(adiponectin)是一种由脂肪细胞特异性高分泌,具有多种生物学功能的特殊蛋白质它直接作用于肝脏、骨骼肌和血管,能提高胰岛素敏感性,增强脂肪酸β氧化,抵制血管炎症反应,最新研究还发现脂联素和骨生成密切相关。与其它脂肪因子不同的是,循环中脂联素的浓度与人体脂肪含量成反比,会因TNF-α的作用而上调,会被噻唑烷二酮类药物所抑制,还受到胰岛素抵抗和炎症反应的影响脂联素受体有2类,分别为AdipoR1和AdipoR2,AdipoR1主要分布在骨骼肌上,AdipoR2则高表达于肝脏组织。本文主要综述了脂联素及其受体的结构、生物学功能和研究进展。  相似文献   

11.
The circadian clock controls energy homeostasis by regulating circadian expression of proteins involved in metabolism. Disruption of circadian rhythms leads to obesity and metabolic disorders. Little is known regarding the control of the biological clock over adiponectin signaling pathway in adipose tissue, the adiponectin producer, and muscle, an adiponectin target tissue under fasting, low‐fat (LF), or high‐fat (HF) diet. Mice were fed LF or HF diet for 7 weeks and fasted on the last day. The circadian mRNA expression of clock genes and components of adiponectin metabolic pathway (mAdipoR1, mAdipoR2, mPparα, mPparγ, mAmpk, and mAcc) in the muscle and adipose tissue were tested. Using average daily levels of multiple time points around the circadian cycle, we assessed mRNA levels of the different adiponectin signaling components. In addition, serum glucose, adiponectin, and insulin were measured. Under LF diet, adiponectin signaling pathway components exhibited circadian rhythmicity at the mRNA levels. Fasting and HF diet followed by fasting disrupted this circadian expression causing a phase advance or delay, respectively. Changes were also found in the expression levels of adiponectin receptor, mAmpk, mAcc, mPparα, and mPparγ reflecting a defect in adiponectin signaling. As both peroxisome proliferator‐activated receptor α (PPARα) and mAMPK are linked to the core clock mechanism, they could mediate the disruptions seen in clock gene expression under HF diet. In turn, the circadian clock affects the daily rhythm of these adiponectin signaling components.  相似文献   

12.
13.
Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes.  相似文献   

14.
Previous studies have shown that retinal melatonin plays an important role in the regulation of retinal daily and circadian rhythms. Melatonin exerts its influence by binding to G-protein coupled receptors named melatonin receptor type 1 and type 2 and both receptors are present in the mouse retina. Earlier studies have shown that clock genes are rhythmically expressed in the mouse retina and melatonin signaling may be implicated in the modulation of clock gene expression in this tissue. In this study we determined the daily and circadian expression patterns of Per1, Per2, Bmal1, Dbp, Nampt and c-fos in the retina and in the photoreceptor layer (using laser capture microdissection) in C3H-f+/+ and in melatonin receptors of knockout (MT1 and MT2) of the same genetic background using real-time quantitative RT-PCR. Our data indicated that clock and clock-controlled genes are rhythmically expressed in the retina and in the photoreceptor layer. Removal of melatonin signaling significantly affected the pattern of expression in the retina whereas in the photoreceptor layer only the Bmal1 circadian pattern of expression was affected by melatonin signaling removal. In conclusion, our data further support the notion that melatonin signaling may be important for the regulation of clock gene expression in the inner or ganglion cells layer, but not in photoreceptors.  相似文献   

15.
Tiliroside contained in several dietary plants, such as rose hips, strawberry and raspberry, is a glycosidic flavonoid and possesses anti-inflammatory, antioxidant, anticarcinogenic and hepatoprotective activities. Recently, it has been reported that the administration of tiliroside significantly inhibited body weight gain and visceral fat accumulation in normal mice. In this study, we evaluated the effects of tiliroside on obesity-induced metabolic disorders in obese-diabetic KK-A(y) mice. In KK-A(y) mice, the administration of tiliroside (100 mg/kg body weight/day) for 21 days failed to suppress body weight gain and visceral fat accumulation. Although tiliroside did not affect oxygen consumption, respiratory exchange ratio was significantly decreased in mice treated with tiliroside. In the analysis of metabolic characteristics, it was shown that plasma insulin, free fatty acid and triglyceride levels were decreased, and plasma adiponectin levels were increased in mice administered tiliroside. The messenger RNA expression levels of hepatic adiponectin receptor (AdipoR)-1 and AdipoR2 and skeletal muscular AdipoR1 were up-regulated by tiliroside treatment. Furthermore, it was indicated that tiliroside treatment activated AMP-activated protein kinase in both the liver and skeletal muscle and peroxisome proliferator-activated receptor α in the liver. Finally, tiliroside inhibited obesity-induced hepatic and muscular triglyceride accumulation. These findings suggest that tiliroside enhances fatty acid oxidation via the enhancement adiponectin signaling associated with the activation of both AMP-activated protein kinase and peroxisome proliferator-activated receptor α and ameliorates obesity-induced metabolic disorders, such as hyperinsulinemia and hyperlipidemia, although it does not suppress body weight gain and visceral fat accumulation in obese-diabetic model mice.  相似文献   

16.
17.
18.
High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.  相似文献   

19.
Activation of the adiponectin (APN) signaling axis retards liver fibrosis. However, understanding of the role of AdipoR1 and AdipoR2 in mediating this response is still rudimentary. Here, we sought to elucidate the APN receptor responsible for limiting liver fibrosis by employing AdipoR1 and AdipoR2 knock-out mice in the carbon tetrachloride (CCl4) model of liver fibrosis. In addition, we knocked down receptor function in primary hepatic stellate cells (HSCs) in vitro. Following the development of fibrosis, AdipoR1 and AdipoR2 KO mice had no quantitative difference in fibrosis by Sirius red staining. However, AdipoR2 KO mice had an enhanced fibrotic signature with increased Col1-α1, TGFß-1, TIMP-1, IL-10, MMP-2 and MMP-9. Knockdown of AdipoR1 or AdipoR2 in HSCs followed by APN treatment demonstrated that AdipoR1 and AdipoR2 did not affect proliferation or TIMP-1 gene expression, while AdipoR2 modulated Col1-α1 and α-SMA gene expression, HSC migration, and AMPK activity. These finding suggest that AdipoR2 is the major APN receptor on HSCs responsible for mediating its anti-fibrotic effects.  相似文献   

20.
Dietary methionine restriction (MR) extends lifespan, an effect associated with reduction of body weight gain, and improvement of insulin sensitivity in mice and rats as a result of metabolic adaptations in liver, adipose tissue and skeletal muscle. To test whether MR confers resistance to adiposity and insulin resistance, C57BL/6J mice were fed a high fat diet (HFD) containing either 0.86% methionine (control fed; CF) or 0.12% methionine (methionine-restricted; MR). MR mice on HFD had lower body weight gain despite increased food intake and absorption efficiency compared to their CF counterparts. MR mice on HFD were more glucose tolerant and insulin sensitive with reduced accumulation of hepatic triglycerides. In plasma, MR mice on HFD had higher levels of adiponectin and FGF21 while leptin and IGF-1 levels were reduced. Hepatic gene expression showed the downregulation of Scd1 while Pparg, Atgl, Cd36, Jak2 and Fgf21 were upregulated in MR mice on HFD. Restriction of growth rate in MR mice on HFD was also associated with lower bone mass and increased plasma levels of the collagen degradation marker C-terminal telopeptide of type 1 collagen (CTX-1). It is concluded that MR mice on HFD are metabolically healthy compared to CF mice on HFD but have decreased bone mass. These effects could be associated with the observed increase in FGF21 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号