首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation, mucus hypersecretion, and emphysema, which lead to reduced lung function and breathlessness. The pathologies of COPD are due to an abnormal immune response. Invariant natural killer T (iNKT) cells are an important population of innate lymphocytes and have been implicated in the regulation of immune responses associated with a broad range of diseases including COPD. We have here analyzed the role of iNKT cells in a model of COPD induced by repeated intranasal administration of iNKT cell agonist α-galactosylceramide (α-GalCer). Our results demonstrated that mice that received repeated intranasal administration of α-GalCer had molecular and inflammatory features of COPD including airway inflammation with significant increases in infiltration of macrophages and lymphocytes, CD8+ T cells, as well as proinflammatory cytokines IL-6 and TNF-α. In particular, these mice also showed the presence of pulmonary emphysema, mucus production, and pulmonary fibrosis. Furthermore, neutralization of IL-4 reduced α-GalCer induced emphysema. This study indicates the importance of iNKT cells in the pathogenesis of COPD by an IL-4 dependent mechanism.  相似文献   

2.

Background

Exacerbations of Chronic obstructive pulmonary disease (COPD) are an important cause of the morbidity and mortality associated with the disease. Strategies to reduce exacerbation frequency are thus urgently required and depend on an understanding of the inflammatory milieu associated with exacerbation episodes. Bacterial colonisation has been shown to be related to the degree of airflow obstruction and increased exacerbation frequency. The aim of this study was to asses the kinetics of cytokine release from COPD parenchymal explants using an ex vivo model of lipopolysaccharide (LPS) induced acute inflammation.

Methods

Lung tissue from 24 patients classified by the GOLD guidelines (7F/17M, age 67.9 ± 2.0 yrs, FEV1 76.3 ± 3.5% of predicted) and 13 subjects with normal lung function (8F,5M, age 55.6 ± 4.1 yrs, FEV1 98.8 ± 4.1% of predicted) was stimulated with 100 ng/ml LPS alone or in combination with either neutralising TNFα or IL-10 antibodies and supernatant collected at 1,2,4,6,24, and 48 hr time points and analysed for IL-1β, IL-5, IL-6, CXCL8, IL-10 and TNFα using ELISA. Following culture, explants were embedded in glycol methacrylate and immunohistochemical staining was conducted to determine the cellular source of TNFα, and numbers of macrophages, neutrophils and mast cells.

Results

In our study TNFα was the initial and predictive cytokine released followed by IL-6, CXCL8 and IL-10 in the cytokine cascade following LPS exposure. The cytokine cascade was inhibited by the neutralisation of the TNFα released in response to LPS and augmented by the neutralisation of the anti-inflammatory cytokine IL-10. Immunohistochemical analysis indicated that TNFα was predominantly expressed in macrophages and mast cells. When patients were stratified by GOLD status, GOLD I (n = 11) and II (n = 13) individuals had an exaggerated TNFα responses but lacked a robust IL-10 response compared to patients with normal lung function (n = 13).

Conclusion

We report on a reliable ex vitro model for the investigation of acute lung inflammation and its resolution using lung parenchymal explants from COPD patients. We propose that differences in the production of both TNFα and IL-10 in COPD lung tissue following exposure to bacterial LPS may have important biological implications for both episodes of exacerbation, disease progression and amelioration.  相似文献   

3.
COPD (chronic obstructive pulmonary disease) is characterized by airway inflammation and increases the likelihood of the development of atherosclerosis. Recent studies have indicated that FABP4 (fatty-acid-binding protein 4), an intracellular lipid chaperone of low molecular mass, plays an important role in the regulation of inflammation and atherosclerosis. We carried out a preliminary clinical study aiming at investigating the relationships between circulating FABP4 levels in patients with COPD and inflammation and lung function. We enrolled 50 COPD patients and 39 healthy controls in the study. Lung function tests were performed in all subjects. Plasma levels of FABP4 and adiponectin, TNFα (tumour necrosis factor α) and CRP (C-reactive protein) were measured. The correlations between FABP4 and lung function, adipokine (adiponectin), inflammatory factors and BMI (body mass index) were analysed. Compared with both males with COPD and healthy females, plasma FABP4 levels in females with COPD were significantly increased. Adiponectin and CRP levels were significantly higher in patients with COPD. Furthermore, we found that FABP4 levels were inversely correlated with FEV1% predicted (FEV1 is forced expiratory volume in 1 s) and positively correlated with adiponectin and TNFα in COPD patients. In addition, a positive correlation between plasma FABP4 and CRP was found in females with COPD. However, FABP4 levels were not correlated with BMI. Our results underline a gender difference in FABP4 secretion in stable COPD patients. Further studies are warranted to clarify the exact role of FABP4 in the pathogenesis of COPD.  相似文献   

4.
The β2 adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled β2-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients.The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that β-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activity by reducing levels of both phosphorylated-IKK and -IκBα, thereby decreasing NF-κB nuclear translocation and the expression of MMP-9, an NF-κB target gene. Subsequently, we show that indacaterol significantly inhibits TNF-α/NF-κB-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-κB activity in a β-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.  相似文献   

5.
Oxidative stress is involved in the pathogenesis of airway obstruction in α1-antitrypsin deficient patients. This may result in a shortening of telomere length, resulting in cellular senescence. To test whether telomere length differs in α1-antitrypsin deficient patients compared with controls, we measured telomere length in DNA from peripheral blood cells of 217 α1-antitrypsin deficient patients and 217 control COPD patients. We also tested for differences in telomere length between DNA from blood and DNA from lung tissue in a subset of 51 controls. We found that telomere length in the blood was significantly longer in α1-antitrypsin deficient COPD patients compared with control COPD patients (p = 1×10−29). Telomere length was not related to lung function in α1-antitrypsin deficient patients (p = 0.3122) or in COPD controls (p = 0.1430). Although mean telomere length was significantly shorter in the blood when compared with the lungs (p = 0.0078), telomere length was correlated between the two tissue types (p = 0.0122). Our results indicate that telomere length is better preserved in α1-antitrypsin deficient COPD patients than in non-deficient patients. In addition, measurement of telomere length in the blood may be a suitable surrogate for measurement in the lung.  相似文献   

6.
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.  相似文献   

7.
Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lymphocyte decreases and neutrophil increases following the DE + O3 exposure; lymphocytes and neutrophils changes also persist for at least 22-hours. Because human studies must be conducted under strict safety protocols at environmental levels, these effects are subtle and are generally only seen with detailed statistical analysis. This study indicates that the observed associations between environmental exposures and cardiopulmonary effects are possibly mediated by inflammatory response mechanisms.  相似文献   

8.

Background

Acetylcholine, the primary parasympathetic neurotransmitter in the airways, plays an important role in bronchoconstriction and mucus production. Recently, it has been shown that acetylcholine, by acting on muscarinic receptors, is also involved in airway inflammation and remodelling. The mechanism(s) by which muscarinic receptors regulate inflammatory responses are, however, still unknown.

Methods

The present study was aimed at characterizing the effect of muscarinic receptor stimulation on cytokine secretion by human airway smooth muscle cells (hASMc) and to dissect the intracellular signalling mechanisms involved. hASMc expressing functional muscarinic M2 and M3 receptors were stimulated with the muscarinic receptor agonist methacholine, alone, and in combination with cigarette smoke extract (CSE), TNF-α, PDGF-AB or IL-1β.

Results

Muscarinic receptor stimulation induced modest IL-8 secretion by itself, yet augmented IL-8 secretion in combination with CSE, TNF-α or PDGF-AB, but not with IL-1β. Pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, completely normalized the effect of methacholine on CSE-induced IL-8 secretion, whereas PMA, a PKC activator, mimicked the effects of methacholine, inducing IL-8 secretion and augmenting the effects of CSE. Similar inhibition was observed using inhibitors of IκB-kinase-2 (SC514) and MEK1/2 (U0126), both downstream effectors of PKC. Accordingly, western blot analysis revealed that methacholine augmented the degradation of IκBα and the phosphorylation of ERK1/2 in combination with CSE, but not with IL-1β in hASMc.

Conclusions

We conclude that muscarinic receptors facilitate CSE-induced IL-8 secretion by hASMc via PKC dependent activation of IκBα and ERK1/2. This mechanism could be of importance for COPD patients using anticholinergics.  相似文献   

9.
10.

Background

The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.

Methods

Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.

Results

We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.

Conclusion

Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.  相似文献   

11.

Background

Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and puncture (CLP)-induced sepsis in rats, which then stimulates TNF-α production in Kupffer cells (KCs) through the activation of the α2-AR. It is important to know which of the three α2-AR subtypes (i.e., α2A, α2B or α2C) is responsible for the upregulation of TNF-α production. The aim of this study was to determine the contribution of α2A-AR in this process.

Methodology/Principal Findings

Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of α2A-AR was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a specific α2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal animals. Finally, the impact of α2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and CLP). Gene expression of the α2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-α in cultured KCs, which was specifically inhibited by the α2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased TNF-α gene expression in KCs and plasma TNF-α which was also abrogated by co-administration of BRL-44408. NE also potentiated LPS-induced TNF-α release via the α2A-AR in vitro and in vivo. This potentiation of TNF-α release by NE was mediated through the α2A-AR coupled Gαi protein and the activation of the p38 MAP kinase. Treatment of septic animals with BRL-44408 suppressed TNF-α, prevented multiple organ injury and significantly improved survival from 45% to 75%.

Conclusions/Significance

Our novel finding is that hyperresponsiveness to α2-AR stimulation observed in sepsis is primarily due to an increase in α2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing the α2A-AR antagonist as a new therapy for sepsis.  相似文献   

12.

Background

Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids.

Methods

Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry.

Results

There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all).

Conclusions

Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.  相似文献   

13.
14.

Background

Neutrophils have been involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Underlying mechanisms of neutrophil accumulation in the airways of stable and exacerbated COPD patients are poorly understood. The aim of this study was to assess exhaled breath condensate (EBC) neutrophil chemotactic activity, the level of two chemoattractants for neutrophils (GRO-α and LTB4) during the course of an acute exacerbation of COPD (AECOPD).

Methods

50 ex smoking COPD patients (33 with acute exacerbation and 17 in stable disease) and 20 matched ex smoking healthy controls were compared. EBC was collected by using a commercially available condenser (EcoScreen®). EBC neutrophil chemotactic activity (NCA) was assessed by using Boyden microchambers. Chemotactic index (CI) was used to evaluate cell migration. LTB4 and GROα levels were measured by a specific enzyme immunoassay in EBC.

Results

Stable COPD and outpatients with AECOPD, but not hospitalized with AECOPD, had raised EBC NCA compared to healthy subjects (p < 0.05 and p < 0.01 respectively). In outpatients with AECOPD EBC NCA significantly decreased 6 weeks after the exacerbation. Overall EBC NCA was weakly correlated with sputum neutrophil counts (r = 0.26, p < 0.05).EBC LTB4 levels were increased in all groups of COPD compared to healthy subjects while GRO-α was only raised in patients with AECOPD. Furthermore, EBC LTB4 and GRO-α significantly decreased after recovery of the acute exacerbation. Increasing concentrations (0.1 to 10 μg/mL) of anti- human GRO-α monoclonal antibody had no effect on EBC neutrophil chemotactic activity of 10 exacerbated COPD patients.

Conclusions

EBC NCA rose during acute exacerbation of COPD in ambulatory patients and decreased at recovery. While LTB4 seems to play a role both in stable and in exacerbated phase of the disease, the role of GRO-α as a chemotactic factor during AECOPD is not clearly established and needs further investigation.  相似文献   

15.

Rationale

Nontypeable Haemophilus influenzae (NTHi) is the most common cause for bacterial exacerbations in chronic obstructive pulmonary disease (COPD). Recent investigations suggest the participation of the inflammasome in the pathomechanism of airway inflammation. The inflammasome is a cytosolic protein complex important for early inflammatory responses, by processing Interleukin-1β (IL-1β) to its active form.

Objectives

Since inflammasome activation has been described for a variety of inflammatory diseases, we investigated whether this pathway plays a role in NTHi infection of the airways.

Methods

A murine macrophage cell line (RAW 264.7), human alveolar macrophages and human lung tissue (HLT) were stimulated with viable or non-viable NTHi and/or nigericin, a potassium ionophore. Secreted cytokines were measured with ELISA and participating proteins detected via Western Blot or immunohistochemistry.

Measurements and Main Results

Western Blot analysis of cells and immunohistochemistry of lung tissue detected the inflammasome key components NLRP3 and caspase-1 after stimulation, leading to a significant induction of IL-1β expression (RAW: control at the lower detection limit vs. NTHi 505±111pg/ml, p<0.01). Inhibition of caspase-1 in human lung tissue led to a significant reduction of IL-1β and IL-18 levels (IL-1β: NTHi 24 h 17423±3198pg/ml vs. NTHi+Z-YVAD-FMK 6961±1751pg/ml, p<0.01).

Conclusion

Our data demonstrate the upregulation of the NRLP3-inflammasome during NTHi-induced inflammation in respiratory cells and tissues. Our findings concerning caspase-1 dependent IL-1β release suggest a role for the inflammasome in respiratory tract infections with NTHi which may be relevant for the pathogenesis of bacterial exacerbations in COPD.  相似文献   

16.
17.
Neuroinflammation induced by beta-amyloid (Aβ) plays a critical role in the pathogenesis of Alzheimer’s disease (AD), and inhibiting Aβ-induced neuroinflammation serves as a potential strategy for the treatment of AD. Oridonin (Ori), a compound of Rabdosia rubescens, has been shown to exert anti-inflammatory effects. In this study, we demonstrated that Ori inhibited glial activation and decreased the release of inflammatory cytokines in the hippocampus of Aβ1–42-induced AD mice. In addition, Ori inhibited the NF-κB pathway and Aβ1–42-induced apoptosis. Furthermore, Ori could attenuate memory deficits in Aβ1–42-induced AD mice. In conclusion, our study demonstrated that Ori inhibited the neuroinflammation and attenuated memory deficits induced by Aβ1–42, suggesting that Ori might be a promising candidate for AD treatment.  相似文献   

18.

Background

Histone deacetylase 2 (HDAC2) is a class I histone deacetylase family member that plays a critical role in suppressing inflammatory gene expression in the airways, lung parenchyma, and alveolar macrophages in patients with chronic obstructive pulmonary disease (COPD). However, the expression of HDAC2 in peripheral blood monocytes (PBMCs), nuclear factor kappa B (NF-κB) p65, and serum inflammatory cytokine levels in COPD patients, smokers, and non-smokers remains unclear.

Methods

PBMCs were obtained from COPD patients, healthy smokers, and healthy nonsmokers. The HDAC2 and NF-κB p65 expression were quantified by Western Blot. HDAC activity was assessed by an HDAC fluorometric immunoprecipitation activity assay kit. Serum tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) levels were measured by ELISA.

Results

HDAC2 expression and HDAC activity were decreased in PBMCs in COPD patients compared with smokers and non-smokers. Increased NF-κB p65 expression, serum TNF-α and IL-8 levels were observed in COPD patients compared with nonsmokers. The FEV1%pred was positively correlated with HDAC2 expression and HDAC activity in COPD patients. Smokers had decreased HDAC activity, increased NF-κB p65 expression and serum TNF-α compared with nonsmokers.

Conclusions

HDAC2 expression was decreased in PBMCs of COPD patients and was correlated with disease severity. The reduction of HDAC2 expression not only directly enhances the expression of inflammatory genes, but may account for the activation of NF-κB mediated inflammation. Decreased HDAC2 may serve as a potential biomarker of COPD and predict the decline of lung function.  相似文献   

19.

Background

Apigenin is a non-toxic natural flavonoid that is abundantly present in common fruits and vegetables. It has been reported that apigenin has various beneficial health effects such as anti-inflammation and chemoprevention. Multiple studies have shown that inflammation is an important risk factor for atherosclerosis, diabetes, sepsis, various liver diseases, and other metabolic diseases. Although it has been long realized that apigenin has anti-inflammatory activities, the underlying functional mechanisms are still not fully understood.

Methodology and Principal Findings

In the present study, we examined the effect of apigenin on LPS-induced inflammatory response and further elucidated the potential underlying mechanisms in human THP-1-induced macrophages and mouse J774A.1 macrophages. By using the PrimePCR array, we were able to identify the major target genes regulated by apigenin in LPS-mediated immune response. The results indicated that apigenin significantly inhibited LPS-induced production of pro-inflammatory cytokines, such as IL-6, IL-1β, and TNF-α through modulating multiple intracellular signaling pathways in macrophages. Apigenin inhibited LPS-induced IL-1β production by inhibiting caspase-1 activation through the disruption of the NLRP3 inflammasome assembly. Apigenin also prevented LPS-induced IL-6 and IL-1β production by reducing the mRNA stability via inhibiting ERK1/2 activation. In addition, apigenin significantly inhibited TNF-α and IL-1β-induced activation of NF-κB.

Conclusion and Significance

Apigenin Inhibits LPS-induced Inflammatory Response through multiple mechanisms in macrophages. These results provided important scientific evidences for the potential application of apigenin as a therapeutic agent for inflammatory diseases.  相似文献   

20.

Background

Hypoxia-inducible factor 1α (HIF-1α) is an important regulator of immune and inflammatory responses. We hypothesized that nasal allergic inflammation is attenuated by HIF-1α inhibition and strengthened by HIF-1α stabilization.

Objective

To elucidate the role of HIF-1α in a murine model of allergic rhinitis (AR).

Methods

Mice were pretreated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2) or the HIF-1α inducer cobalt chloride (CoCl2) in an established AR murine model using ovalbumin (OVA)-sensitized BALB/c mice. HIF-1α and vascular endothelial growth factor (VEGF) expression in nasal mucosa was measured and multiple parameters of allergic responses were evaluated.

Results

HIF-1α and VEGF levels were locally up-regulated in nasal mucosa during AR. Inflammatory responses to OVA challenge, including nasal symptoms, inflammatory cell infiltration, eosinophil recruitment, up-regulation of T-helper type 2 cytokines in nasal lavage fluid, and serum OVA-specific IgE levels were present in the OVA-challenged mice. 2ME2 effectively inhibited HIF-1α and VEGF expression and attenuated the inflammatory responses. Stabilization of HIF-1α by CoCl2 facilitated nasal allergic inflammation. HIF-1α protein levels in nasal airways correlated with the severity of AR in mice.

Conclusions

HIF-1α is intimately involved in the pathogenesis of nasal allergies, and the inhibition of HIF-1α may be useful as a novel therapeutic approach for AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号