首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Wild oat (Avena fatua L.) populations resistant to herbicides that inhibit acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) represent an increasingly important weed control problem. The objective of this study was to determine the ACCase mutation responsible for herbicide resistance in a well-studied wild oat biotype (UMI). A 2039-bp region encompassing the carboxybiotin and acetyl-CoA binding domains of multifunctional plastidic ACCase was analyzed. DNA sequences representing three plastidic ACCase gene loci were isolated from both the resistant UMI and a herbicide-susceptible biotype, consistent with the hexaploid nature of wild oat. Only one nonsynonymous point mutation was found among the resistant wild oat sequences, inferring an isoleucine to leucine substitution. The position of this substitution corresponds to residue 1769 of wheat (Triticum aestivum L.) plastidic ACCase (GenBank accession No. AF029895). Analysis of an F2 population derived from a cross between a herbicide-resistant and a susceptible biotype confirmed co-segregation of herbicide resistance with the mutated ACCase. We conclude that the isoleucine to leucine mutation is responsible for herbicide resistance in UMI wild oat based on a comparison of the substitution site across species and ACCase types. While isoleucine is conserved among plastidic ACCases of herbicide-susceptible grasses, leucine is found in plastidic and cytosolic forms of multifunctional herbicide-resistant ACCase.  相似文献   

2.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

3.
Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple copies of target genes. This may complicate the study of resistance mechanisms. Japanese foxtail was found to be a tetraploid by flow cytometer and chromosome counting, two commonly used methods in the determination of ploidy levels. We found that there are two copies of the gene encoding plastidic acetyl-CoA carboxylase (ACCase) in Japanese foxtail and all the homologous genes are expressed. Additionally, no difference in ploidy levels or ACCase gene copy numbers was observed between an ACCase-inhibiting herbicide-resistant and a herbicide-sensitive population in this study.  相似文献   

4.
Effective herbicide resistance management requires an assessment of the range of spatial dispersion of resistance genes among weed populations and identification of the vectors of this dispersion. In the grass weed Alopecurus myosuroides (black-grass), seven alleles of the acetyl-CoA carboxylase (ACCase) gene are known to confer herbicide resistance. Here, we assessed their respective frequencies and spatial distribution on two nested geographical scales (the whole of France and the French administrative district of C?te d'Or) by genotyping 13 151 plants originating from 243 fields. Genetic variation in ACCase was structured in local populations at both geographical scales. No spatial structure in the distribution of resistant ACCase alleles and no isolation by distance were detected at either geographical scale investigated. These data, together with ACCase sequencing and data from the literature, suggest that evolution of A. myosuroides resistance to herbicides occurred at the level of the field or group of adjacent fields by multiple, independent appearances of mutant ACCase alleles that seem to have rather restricted spatial propagation. Seed transportation by farm machinery seems the most likely vector for resistance gene dispersal in A. myosuroides.  相似文献   

5.
Black‐grass (Alopecurus myosuroides) is an allogamous grass weed common in cereal fields of northern Europe, which developed resistance to a widely used family of herbicides, the ACCase‐inhibiting herbicides. Resistance is caused by mutations at the ACCase gene and other, metabolism‐based, mechanisms. We investigated the genetic structure of 36 populations of black‐grass collected in one region of France (Côte d’Or), using 116 amplified fragment length polymorphism (AFLP) loci and sequence data at the ACCase gene. The samples were characterized for their level of herbicide resistance and genotyped for seven known ACCase mutations conferring resistance. All samples contained herbicide‐resistant plants, and 19 contained ACCase mutations. The genetic diversity at AFLP loci was high (HT = 0.246), while differentiation among samples was low (FST = 0.023) and no isolation by distance was detected. Genetic diversity within samples did not vary with the frequency of herbicide resistance. A Bayesian algorithm was used to infer population structure. The two genetic clusters inferred were not associated with any geographical structure or with herbicide resistance. A high haplotype diversity (Hd = 0.873) and low differentiation (GST = 0.056) were observed at ACCase. However, haplotype diversity within samples decreased with the frequency of ACCase‐based resistance. We suggest that the genetic structure of black‐grass is affected by its recent expansion as a weed. Our data demonstrate that the strong selection imposed by herbicides did not modify the genome‐wide genetic structure of an allogamous weed that probably has large effective population sizes. Our study gives keys to a better understanding of the evolution of successful, noxious weeds in modern agriculture.  相似文献   

6.
This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [14C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.  相似文献   

7.
G X Yu  A L Bush  R P Wise 《Génome》1996,39(1):155-164
The colinearity of markers linked with resistance loci on linkage group A of diploid oat, on the homoeologous groups in hexaploid oat, on barley chromosome 1H, and on homoeologous maize chromosomes was determined. Thirty-two DNA probes from homoeologous group 1 chromosomes of the Gramineae were tested. Most of the heterologous probes detected polymorphisms that mapped to linkage group A of diploid oat, two linkage groups of hexaploid oat, barley chromosome 1H, and maize chromosomes 3, 6, and 8. Many of these DNA markers appeared to have conserved linkage relationships with resistance and prolamin loci in Avena, Hordeum, and Zea mays. These resistance loci included the Pca crown rust resistance cluster in diploid oat, the R203 crown rust resistance locus in hexaploid oat, the Mla powdery mildew resistance cluster in barley, and the rp3, wsm1, wsm2, mdm1, ht2, and htn1 resistance loci in maize. Prolamin encoding loci included Avn in diploid oat and Hor1 and Hor2 in barley. A high degree of colinearity was revealed among the common RFLP markers on the small chromosome fragments among these homoeologous groups. Key words : disease resistance, colinearity, Gramineae, cereals.  相似文献   

8.
The spectrum of herbicide resistance was determined in an annual ryegrass (Lolium rigidum Gaud.) biotype (SLR 3) that had been exposed to the grass herbicide sethoxydim, an inhibitor of the plastidic enzyme acetylcoenzyme A carboxylase (ACCase, EC 6.4.1.2), for three consecutive years. This biotype has an 18-fold resistance to sethoxydim and enhanced resistance to other cyclohexanedione herbicides compared with a susceptible biotype (VLR 1). The resistant biotype also has a 47- to >300-fold cross-resistance to the aryloxyphenoxypropanoate herbicides which share ACCase as a target site. No resistance is evident to herbicide with a target site different from ACCase. The absorption of [4-14C]sethoxydim, the rate of metabolic degradation and the nature of the herbicide metabolites are similar in the resistant and susceptible biotypes. While the total activity of the herbicide target enzyme ACCase is similar in extracts from the two biotypes, the kinetics of herbicide inhibition differ. The concentrations of sethoxydim and tralkoxydim required to inhibit the activity of ACCase by 50% are 7.8 and >9.5 times higher, respectively, in the resistant biotype. The activity of ACCase from the resistant biotype was also less sensitive to aryloxyphenoxypropanode herbicides than the susceptible biotype. The spectrum of resistance at the whole-plant level is correlated with resistance at the ACCase level and confirms that a less sensitive form of the target enzyme endows resistance in biotype SLR 3.Abbreviations ACCase acetyl-coenzyme A carboxylase - AOPP aryloxyphenoxypropanoate - CHD cyclohexanedione - GR50 dose giving 50% reduction of growth - IG50 dose giving 50% reduction of germination - LD50 lethal dose 50 This work was partially supported by The Grains Research and Development Corporation of Australia through a grant to Dr. R. Knight, Department of Plant Science, Waite Agricultural Research Institute. The encouragement and generous support of Dr. R. Knight is gratefully acknowledged.  相似文献   

9.
The development of herbicide multiple-resistance in weed species represents a major threat to current agricultural practices. The mechanistic basis for herbicide multiple-resistance has been investigated in a population of the annual grass weed Lolium rigidum Gaud. (annual ryegrass) resistant to herbicides affecting 6 target sites. A subset of the resistant population (R2 subset) has been isolated by germination on a medium containing the acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) inhibiting herbicide, sethoxydim ((2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one)). This 12% R2 subset of the population is 600 times more resistant to sethoxydim and between 30 to 200 times more resistant to other ACCase inhibitors than the bulk of the R population. The subset has a form of ACCase which is 6 to 55 times less sensitive to inhibition by these herbicides than the enzyme present in the bulk of the resistant or in the susceptible population. There was no difference in the uptake and metabolic degradation of [4-14C]sethoxydim between the R2 subset and the unselected R population. These results show the accumulation of different resistance mechanisms in that single population. Furthermore we propose that this accumulation of multiple resistance mechanisms is the basis for herbicide multiple-resistance in this biotype.  相似文献   

10.
燕麦属不同倍性种质资源抗旱性状评价及筛选   总被引:4,自引:0,他引:4  
盆栽控水试验测定了燕麦属13个二倍体、7个四倍体和5个六倍体物种共106份材料的主要抗旱性状表现,用GGEbiplot软件的主成分分析法比较了各性状之间的关系及其对抗旱鉴定的贡献,综合评价燕麦属野生资源在燕麦抗旱育种中的潜能和利用价值。结果表明,干旱处理后植株的死亡率和萎蔫程度与可溶性糖含量的增加幅度呈显著正相关关系(r>0.5, P<0.05),而胁迫后植株的丙二醛(MDA)含量和植株相对电导率与抗旱能力也明显相关(r>0.5, P<0.01)。综合考虑抗旱的相关形态和生理指标,筛选到二倍体Avena atlanticaA. wiestii A. strigosa,四倍体种A. murphyi,以及六倍体栽培燕麦A. sativa和普通野燕麦A. fatua的部分居群具有优良的综合抗旱性。基于A. wiestii,A. strigosaA. murphyi与栽培燕麦较近的亲缘关系,其抗旱性可通过远缘杂交的方式在普通燕麦育种中加以利用。而对于具有明显抗旱优势的野生二倍体材料A. atlantica,则可通过克隆其抗旱基因进而遗传转化的方法将其应用于栽培燕麦的抗旱性改良。同时该研究表明燕麦的抗旱性不具有种属和分布区域的特异性,因此其抗旱性并非简单的由基因或环境决定,在确定抗旱材料时需要对个体进行全面的抗旱性评价和鉴定,以期在利用抗旱材料或通过克隆抗旱基因来改善干旱地区生态环境的实践中能更准确和有效。  相似文献   

11.
I G Loskutov 《Genetika》2001,37(5):581-590
Problems of crosses between various oat species are considered with regard to establishing their taxonomic positions and genomic compositions of individual species. The evolution of the genus and approaches to the search for the diploid and tetraploid ancestor of the hexaploid species are considered. Use of wild oat species in breeding is demonstrated. The results of studies of the gene pool of wild oat species are presented. These studies were performed at the Vavilov All-Russian Plant Breeding Institute with the purpose of solving problems of phylogeny and practical breeding.  相似文献   

12.
Problems of crosses between various oat species are considered with regard to establishing their taxonomic positions and genomic compositions of individual species. The evolution of the genus and approaches to the search for the diploid and tetraploid ancestor of the hexaploid species are considered. Use of wild oat species in breeding is demonstrated. The results of studies of the gene pool of wild oat species are presented. These studies were performed at the Vavilov All-Russian Plant Breeding Institute with the purpose of solving problems of phylogeny and practical breeding.  相似文献   

13.
The appearance of biotypes of the annual grass weed black‐grass (Alopecurus myosuroides L. Huds), which are resistant to certain graminicides, is the most significant example of acquired resistance to herbicides seen so far in European agriculture. An investigation was perfomed into the basis of the specific cross‐resistance to cyclohexanedione (CHD) and aryloxyphenoxypropionoic acid (AOPP) herbicides in the ‘Notts A1’ population of A. myosuroides, which survived treatment of fields with recommended rates of AOPP herbicides. In comparison with the wild‐type ‘Rothamsted’ population, the resistant biotype showed over 100‐fold resistance to these herbicides in a hydroponic growth system. Biosynthesis of fatty acids and activity of crude extracts of acetyl‐CoA carboxylase (ACCase) were commensurately less sensitive to these herbicides in Notts A1 compared with the Rothamsted biotype. These data are consistent with the hypothesis that the highly resistant population has arisen through selection of a mutant ACCase which is much less sensitive to the AOPP and CHD graminicides. Rapidly growing cell suspension cultures established from the Notts A1 population also showed high resistance indices for CHD or AOPP herbicides compared with cultures from the Rothamsted biotype. Fatty acid biosynthesis and ACCase activity in the cell suspensions were similarly sensitive towards the graminicides to those in the foliar tissue counterparts of the resistant and sensitive populations. Moreover, purification of the main (chloroplast) isoform of acetyl‐CoA carboxylase showed that this enzyme from the Notts A1 population was over 200‐fold less sensitive towards the AOPP herbicide, quizalofop, than the equivalent isoform from the Rothamsted population. These data again fully supported the proposal that resistance in the Notts biotype is due to an insensitive acetyl‐CoA carboxylase isoform. Overall, cell suspensions were also demonstrated to be excellent tools for further investigation of the molecular basis of the high level herbicide resistance which is prone to occur in A. myosuroides.  相似文献   

14.
The acetyl-coenzyme A carboxylase (ACCase)-inhibiting cyclohexanedione herbicide clethodim is used to control grass weeds infesting dicot crops. In Australia clethodim is widely used to control the weed Lolium rigidum. However, clethodim-resistant Lolium populations have appeared over the last 5 years and now are present in many populations across the western Australian wheat (Triticum aestivum) belt. An aspartate-2078-glycine (Gly) mutation in the plastidic ACCase enzyme has been identified as the only known mutation endowing clethodim resistance. Here, with 14 clethodim-resistant Lolium populations we revealed diversity and complexity in the molecular basis of resistance to ACCase-inhibiting herbicides (clethodim in particular). Several known ACCase mutations (isoleucine-1781-leucine [Leu], tryptophan-2027-cysteine [Cys], isoleucine-2041-asparagine, and aspartate-2078-Gly) and in particular, a new mutation of Cys to arginine at position 2088, were identified in plants surviving the Australian clethodim field rate (60 g ha(-1)). Twelve combination patterns of mutant alleles were revealed in relation to clethodim resistance. Through a molecular, biochemical, and biological approach, we established that the mutation 2078-Gly or 2088-arginine endows sufficient level of resistance to clethodim at the field rate, and in addition, combinations of two mutant 1781-Leu alleles, or two different mutant alleles (i.e. 1781-Leu/2027-Cys, 1781-Leu/2041-asparagine), also confer clethodim resistance. Plants homozygous for the mutant 1781, 2078, or 2088 alleles were found to be clethodim resistant and cross resistant to a number of other ACCase inhibitor herbicides including clodinafop, diclofop, fluazifop, haloxyfop, butroxydim, sethoxydim, tralkoxydim, and pinoxaden. We established that the specific mutation, the homo/heterozygous status of a plant for a specific mutation, and combinations of different resistant alleles plus herbicide rates all are important in contributing to the overall level of herbicide resistance in genetically diverse, cross-pollinated Lolium species.  相似文献   

15.
A biotype of Avena sterilis ssp. ludoviciana is highly resistantto a range of herbicides which inhibit a key enzyme in fattyacid synthesis, acetyl-CoA carboxylase (ACCase). Possible mechanismsof herbicide resistance were investigated in this biotype. Acetyl-CoAcarboxylase from the resistant biotype is less sensitive toinhibition by herbicides to which resistance is expressed. I50values for herbicide inhibition of ACCase were 52 to 6 timesgreater in the resistant biotype than in the susceptible biotype.This was the only major difference found between the resistantand susceptible biotypes. The amount of ACCase in the meristemsof the resistant and susceptible is similar during ontogenyand no difference was found in distribution of ACCase betweenthe two biotypes. Uptake, translocation and metabolism of [14C]diclofop-methylwere not different between the two biotypes. In vivo, ACCaseactivity in the meristems of the susceptible biotype was greatlyinhibited by herbicide application whereas only 25% inhibitionoccurred in the resistant biotype. Depolarisation of plasmamembrane potential by 50 µM diclofop acid was observedin both biotypes and neither biotype showed recovery of themembrane potential following removal of the herbicide. Hence,a modified form of ACCase appears to be the major determinantof resistance in this resistant wild oat biotype. (Received February 10, 1994; Accepted March 11, 1994)  相似文献   

16.
Durum and bread wheat need transgenic traits such as herbicide and disease resistance due to recent evolution of herbicide resistant grass weeds and an intractable new strain of stem rust. Transgenic wheat varieties have not been commercialized partly due to potential transgene movement to wild/weedy relatives, which occurs naturally to closely related Aegilops and other spp. Recombination does not occur in the F1 hybrid between wheat and its relatives due to the presence of the Ph1 gene on wheat chromosome arm 5BL, which acts as a chaperone, preventing promiscuous homoeologous pairing to similar, but not homologous chromosomes of the wild/weedy species. Thus recombination must occur during backcrossing after the wheat Ph1 gene has been eliminated. Based on these findings, we speculate that Ph1 could be used to prevent gene introgression into weedy relatives. We propose two methods to prevent such transgene establishment: (1) link the transgene in proximity to the wheat Ph1 gene and (2) insert the transgene in tandem with the lethal barnase on any chromosome arm other than 5BL, and insert barstar, which suppresses barnase on chromosome arm 5BL in proximity to Ph1. The presence of Ph1 in backcross plants containing 5BL will prevent the homoeologous establishment of barnase coupled to the desired transgene in the wild population. 5BL itself will be eliminated during repeated backcrossing to the wild parent, and progeny bearing the desired transgene in tandem with barnase but without the Ph1-barstar complex will die.  相似文献   

17.
Lolium rigidum is an obligately cross‐pollinated, genetically diverse species and an economically important herbicide resistance‐prone weed. Our previous work has demonstrated that recurrent selection of initially susceptible L. rigidum populations with low herbicide rates results in rapid herbicide resistance evolution. Here we report on the mechanisms endowing low‐dose‐selected diclofop‐methyl resistance in L. rigidum. Results showed that resistance was not due to target‐site ACCase mutations or overproduction, or differential herbicide leaf uptake and translocation. The in vivo de‐esterification of diclofop‐methyl into phytotoxic diclofop acid was rapid and similar in resistant versus susceptible populations. However, further metabolism of diclofop acid into non‐toxic metabolites was always faster in resistant plants than susceptible plants, resulting in up to 2.6‐fold lower level of diclofop acid in resistant plants. This corresponded well with up to twofold higher level of diclofop acid metabolites in resistant plants. The major polar metabolites of diclofop acid chromatographically resembled those of wheat, a naturally tolerant species. Clearly, recurrent selection at reduced herbicide rates selected for non‐target‐site‐based enhanced rates of herbicide metabolism, likely involving cytochrome P450 monooxygenases.  相似文献   

18.
Insertional mutagenesis and gene silencing are efficient tools for the determination of gene function. In contrast to gain- or loss-of-function approaches, RNA interference (RNAi)-induced gene silencing can possibly silence multigene families and homoeologous genes in polyploids. This is of great importance for functional studies in hexaploid wheat (Triticum aestivum), where most of the genes are present in at least three homoeologous copies and conventional insertional mutagenesis is not effective. We have introduced into bread wheat double-stranded RNA-expressing constructs containing fragments of genes encoding Phytoene Desaturase (PDS) or the signal transducer of ethylene, Ethylene Insensitive 2 (EIN2). Transformed plants showed phenotypic changes that were stably inherited over at least two generations. These changes were very similar to mutant phenotypes of the two genes in diploid model plants. Quantitative real-time polymerase chain reaction revealed a good correlation between decreasing mRNA levels and increasingly severe phenotypes. RNAi silencing had the same quantitative effect on all three homoeologous genes. The most severe phenotypes were observed in homozygous plants that showed the strongest mRNA reduction and, interestingly, produced around 2-fold the amount of small RNAs compared to heterozygous plants. This suggests that the effect of RNAi in hexaploid wheat is gene-dosage dependent. Wheat seedlings with low mRNA levels for EIN2 were ethylene insensitive. Thus, EIN2 is a positive regulator of the ethylene-signaling pathway in wheat, very similar to its homologs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Our data show that RNAi results in stably inherited phenotypes and therefore represents an efficient tool for functional genomic studies in polyploid wheat.  相似文献   

19.
A cultivated oat linkage map was developed using a recombinant inbred population of 136 F6:7 lines from the cross 'Ogle' x 'TAM O-301'. A total of 441 marker loci, including 355 restriction fragment length polymorphism (RFLP) markers, 40 amplified fragment length polymorphisms (AFLPs), 22 random amplified polymorphic DNAs (RAPDs), 7 sequence-tagged sites (STSs), 1 simple sequence repeat (SSR), 12 isozyme loci, and 4 discrete morphological traits, was mapped. Fifteen loci remained unlinked, and 426 loci produced 34 linkage groups (with 2-43 loci each) spanning 2049 cM of the oat genome (from 4.2 to 174.0 cM per group). Comparisons with other Avena maps revealed 35 genome regions syntenic between hexaploid maps and 16-34 regions conserved between diploid and hexaploid maps. Those portions of hexaploid oat maps that could be compared were completely conserved. Considerable conservation of diploid genome regions on the hexaploid map also was observed (89-95%); however, at the whole-chromosome level, colinearity was much lower. Comparisons among linkage groups, both within and among Avena mapping populations, revealed several putative homoeologous linkage group sets as well as some linkage groups composed of segments from different homoeologous groups. The relationships between many Avena linkage groups remain uncertain, however, due to incomplete coverage by comparative markers and to complications introduced by genomic duplications and rearrangements.  相似文献   

20.
Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat (Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号