首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Locust antennal lobe (AL) projection neurons (PNs) respond to olfactory stimuli with sequences of depolarizing and hyperpolarizing epochs, each lasting hundreds of milliseconds. A computer simulation of an AL network was used to test the hypothesis that slow inhibitory connections between local neurons (LNs) and PNs are responsible for temporal patterning. Activation of slow inhibitory receptors on PNs by the same GABAergic synapses that underlie fast oscillatory synchronization of PNs was sufficient to shape slow response modulations. This slow stimulus- and neuron-specific patterning of AL activity was resistant to blockade of fast inhibition. Fast and slow inhibitory mechanisms at synapses between LNs and PNs can thus form dynamical PN assemblies whose elements synchronize transiently and oscillate collectively, as observed not only in the locust AL, but also in the vertebrate olfactory bulb.  相似文献   

2.
Stimulus evoked oscillatory synchronization of neural assemblies has been most clearly documented in the olfactory and visual systems. Recent results with the olfactory system of locusts show that information about odour identity is contained in spatial and temporal aspects of an oscillatory population response. This suggests that brain oscillations may reflect a common reference for messages encoded in time. Although stimulus-evoked oscillatory phenomena are reliable, their roles in perception, memory and pattern recognition remain to be demonstrated. Using honey bees, we demonstrated that odour encoding involves, as in locusts, the oscillatory synchronization of assemblies of neurons, and that this synchronization is, here also, selectively abolished by the GABA receptor antagonist picrotoxin. In collaboration with Dr Brian Smith's laboratory, we showed, using a behavioural learning paradigm, that picrotoxin-induced desynchronization impairs the discrimination of molecularly similar odourants, but not that of dissimilar odours. It appears, therefore, that oscillatory synchronization of neuronal assemblies is relevant, and essential for fine odour discrimination. Finally, experiments with locust mushroom body neurons, two synapses downstream from the antennal lobe, indicate that their responses to odours become less specific when antennal lobe neurons are desynchronized by picrotoxin injection. These results suggest that oscillatory synchronization and the kind of temporal encoding it affords provide an additional dimension by which the brain can segment spatially overlapping stimulus representations.  相似文献   

3.
Odor presentation generates both fast oscillations and slow patterning in the spiking activity of the projection neurons (PNs) in the antennal lobe (AL) of locusts, moths and bees. Experimental results indicate that the oscillations are the result of the interaction between the PNs and the inhibitory local neurons (LNs) in the AL; e.g., blocking inhibition by application of GABA-receptor antagonists abolishes these oscillations. The slow patterning, on the other hand, was shown to be somewhat resistant to such blockage. In a H-H model, we reproduce both the oscillations and the slow patterning. As previously suggested, the oscillations are the result of the interaction between the PNs and LNs. We suggest that calcium and calcium-dependent potassium channels (found in PNs of bees and moths) are sufficient to account for the slow patterning resistant to the application of GABA-receptor antagonists. The intrinsic bursting property of the PNs, resulting from these additional modeled currents, give rise to another network feature that was seen experimentally in locusts: A relatively small increase in the number of additional generated PN action potentials when LN input is blocked. Consequently, the major effect of network inhibition is to redistribute the action potentials of the PNs from bursting to one action potential per cycle of the oscillations. Action Editor: Christiane Linster  相似文献   

4.
For the analysis of coding mechanisms in the insect olfactory system, a fully connected network of synchronously updated McCulloch and Pitts neurons (MC-P type) was developed [Quenet, B., Horn, D., 2003. The dynamic neural filter: a binary model of spatio-temporal coding. Neural Comput. 15 (2), 309-329]. Considering the update time as an intrinsic clock, this "Dynamic Neural Filter" (DNF), which maps regions of input space into spatio-temporal sequences of neuronal activity, is able to produce exact binary codes extracted from the synchronized activities recorded at the level of projection neurons (PN) in the locust antennal lobe (AL) in response to different odors [Wehr, M., Laurent, G., 1996. Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162-166]. Here, in a first step, we separate the populations of PN and local inhibitory neurons (LN) and use the DNF as a guide for simulations based on biological plausible neurons (Hodgkin-Huxley: H-H type). We show that a parsimonious network of 10 H-H neurons generates action potentials whose timing represents the required codes. In a second step, we construct a new type of DNF in order to study the population dynamics when different delays are taken into account. We find synaptic matrices which lead to both the emergence of robust oscillations and spatio-temporal patterns, using a formal criterion, based on a Normalized Euclidian Distance (NED), in order to measure the use of the temporal dimension as a coding dimension by the DNF. Similarly to biological PN, the activity of excitatory neurons in the model can be both phase-locked to different cycles of oscillations which remind local field potential (LFP), and nevertheless exhibit dynamic behavior complex enough to be the basis of spatio-temporal codes.  相似文献   

5.
D Malun 《Histochemistry》1991,96(3):197-207
Two types of central neurons in the antennal lobe of the American cockroach Periplaneta americana were labeled with a combination of two specific markers. Their synaptic contacts were characterized and their distribution on the neurons examined. A uniglomerular pheromone-sensitive projection neuron with dendritic arbor in the male-specific macroglomerulus (attractant neuron) was characterized physiologically by intracellular recording and then filled with biocytin, which was converted to a marker for this individual neuron by a preembedding procedure. In a postembedding procedure local, multiglomerular interneurons were marked by immunogold labeling of GABA. Two kinds of synaptic contacts were found on the attractant neuron. (i) Input synapses from GABA-immunoreactive profiles. There were many of these, which (together with results of previous studies) suggests that local interneurons mediate polysynaptic transmission from antennal receptor fibers to the projection neuron. (ii) Output synapses onto GABA-immunoreactive profiles and onto non-identified neurons. These contacts indicate that signals generated by the projection neurons in a given glomerulus are passed back to multiglomerular interneurons and hence are also transmitted to other glomeruli.  相似文献   

6.
Summary Two types of central neurons in the antennal lobe of the American cockroach Periplaneta americana were labeled with a combination of two specific markers. Their synaptic contacts were characterized and their distribution on the neurons examined. A uniglomerular pheromone-sensitive projection neuron with dendritic arbor in the male-specific macroglomerulus (attractant neuron) was characterized physiologically by intracellular recording and then filled with biocytin, which was converted to a marker for this individual neuron by a preembedding procedure. In a postembedding procedure local, multiglomerular interneurons were marked by immunogold labeling of GABA. Two kinds of synaptic contacts were found on the attractant neuron. (i) Input synapses from GABA-immunoreactive profiles. There were many of these, which (together with results of previous studies) suggests that local interneurons mediate polysynaptic transmission from antennal receptor fibers to the projection neuron. (ii) Output synapses onto GABA-immunoreactive profiles and onto non-identified neurons. These contacts indicate that signals generated by the projection neurons in a given glomerulus are passed back to multiglomerular interneurons and hence are also transmitted to other glomeruli.  相似文献   

7.
Yu D  Ponomarev A  Davis RL 《Neuron》2004,42(3):437-449
In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by recruiting new synapses into that code. Pairing of an odor-conditioned stimulus with an electric shock-unconditioned stimulus causes new projection neuron synapses to respond to the odor along with those normally activated prior to conditioning. Different odors recruit different groups of projection neurons into the spatial code. The change in odor representation after conditioning appears to be intrinsic to projection neurons. The rapid recruitment by conditioning of new synapses into the representation of sensory information may be a general mechanism underlying many forms of short-term memory.  相似文献   

8.
As a first step towards understanding the functional role of neuroactive substances in the first olfactory center of the male silkworm moth Bombyx mori, we carried out an immunocytochemical identification of antennal lobe neurons. Antibodies against gamma-aminobutyric acid (GABA), FMRFamide, serotonin, tyramine and histamine were applied to detect their existence in the antennal lobe. In the present immunocytochemical study, we clarified four antenno-cerebral tracts from their origin and projection pathways to the protocerebrum, and revealed the following immunoreactive cellular organization in the antennal lobe. 1) Local interneurons with cell bodies in the lateral cell cluster showed GABA, FMRFamide and tyramine immunoreactivity. 2) Projection neurons passing through the middle antenno-cerebral tract with cell bodies in the lateral cell cluster showed GABA and FMRFamide immunoreactivity. Projection neurons passing through the outer antenno-cerebral tract with cell bodies in the lateral cell cluster showed FMRFamide immunoreactivity. 3) Centrifugal neurons passing through the inner antenno-cerebral tract b with cell bodies located outside the antennal lobe showed serotonin and tyramine immunoreactivity. Our results revealed basic distribution patterns of neuroactive substances in the antennal lobe and indicated that each projection pathway from the antennal lobe to the protocerebrum contains specific combination of neuroactive substances.  相似文献   

9.
Using intra- and extracellular recording methods, we studied the activity of pheromone-responsive projection neurons in the antennal lobe of the moth Manduca sexta. Intracellularly recorded responses of neurons to antennal stimulation with the pheromone blend characteristically included both inhibitory and excitatory stages of various strengths. To observe the activity of larger groups of neurons, we recorded responses extracellularly in the macroglomerular complex of the antennal lobe. The macroglomerular complex is part of a specialized olfactory subsystem and the site of first-order central processing of sex-pheromonal information. Odors such as the pheromone blend and host-plant (tobacco) volatiles gave rise to evoked potentials that were reproducible upon repeated antennal stimulation. Evoked potentials showed overriding high-frequency oscillations when the antenna was stimulated with the pheromone blend or with either one of the two key pheromone components. The frequency of the oscillations was in the range of 30–50 Hz. Amplitude and frequency of the oscillations varied during the response to pheromonal stimulation. Recording intracellular and extracellular activity simultaneously revealed phase-locking of action potentials to potential oscillations. The results suggest that the activity of neurons of the macroglomerular complex was temporally synchronized, potentially to strengthen the pheromone signal and to improve olfactory perception. Accepted: 19 December 1997  相似文献   

10.
The temperature receptor cells on the cockroach antennae are all excited by rapid cooling. In the antennal lobe, however, cold- as well as warm-responsive neurons occur. They are excited either by rapid step-like cooling or rapid step-like warming. Responses to such temperature transients do not show, however, whether antennal lobe neurons convey information on slowly changing temperatures typical of temperature gradients used for orientation. In contrast slow temperature changes permit an analysis of the effects of both instantaneous temperature and its rate of change. We compared the effect of slow temperature oscillations on the responses of antennal cold-receptors cells and cold- and warm-responsive projection neurons. In all cases the discharge rates were modulated by the temperature oscillations. They displayed a double dependence on instantaneous temperature and its rate of change. Information about cooling and warming, first contained in the output of a single cold-receptor cell diverges to form the parallel pathways of cold- and warm-responsive projection neurons, thereby in particular improving the detection of fluctuations in temperature.  相似文献   

11.
Responses of neurons in the antennal lobe (AL) of the moth Manduca sexta to stimulation of the ipsilateral antenna by odors consist of excitatory and inhibitory synaptic potentials. Stimulation of primary afferent fibers by electrical shock of the antennal nerve causes a characteristic IPSP-EPSP synaptic response in AL projection neurons. The IPSP in projection neurons reverses below the resting potential, is sensitive to changes in external and internal chloride concentration, and thus is apparently mediated by an increase in chloride conductance. The IPSP is reversibly blocked by 100 microM picrotoxin or bicuculline. Many AL neurons respond to application of GABA with a strong hyperpolarization and an inhibition of spontaneous spiking activity. GABA responses are associated with an increase in neuronal input conductance and a reversal potential below the resting potential. Application of GABA blocks inhibitory synaptic inputs and reduces or blocks excitatory inputs. EPSPs can be protected from depression by application of GABA. Muscimol, a GABA analog that mimics GABA responses at GABAA receptors but not at GABAB receptors in the vertebrate CNS, inhibits many AL neurons in the moth.  相似文献   

12.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

13.
Odor information is coded in the insect brain in a sequence of steps, ranging from the receptor cells, via the neural network in the antennal lobe, to higher order brain centers, among which the mushroom bodies and the lateral horn are the most prominent. Across all of these processing steps, coding logic is combinatorial, in the sense that information is represented as patterns of activity across a population of neurons, rather than in individual neurons. Because different neurons are located in different places, such a coding logic is often termed spatial, and can be visualized with optical imaging techniques. We employ in vivo calcium imaging in order to record odor‐evoked activity patterns in olfactory receptor neurons, different populations of local neurons in the antennal lobes, projection neurons linking antennal lobes to the mushroom bodies, and the intrinsic cells of the mushroom bodies themselves, the Kenyon cells. These studies confirm the combinatorial nature of coding at all of these stages. However, the transmission of odor‐evoked activity patterns from projection neuron dendrites via their axon terminals onto Kenyon cells is accompanied by a progressive sparsening of the population code. Activity patterns also show characteristic temporal properties. While a part of the temporal response properties reflect the physical sequence of odor filaments, another part is generated by local neuron networks. In honeybees, γ‐aminobutyric acid (GABA)‐ergic and histaminergic neurons both contribute inhibitory networks to the antennal lobe. Interestingly, temporal properties differ markedly in different brain areas. In particular, in the antennal lobe odor‐evoked activity develops over slow time courses, while responses in Kenyon cells are phasic and transient. The termination of an odor stimulus is reflected by a decrease in activity within most glomeruli of the antennal lobe and an off‐response in some glomeruli, while in the mushroom bodies about half of the odor‐activated Kenyon cells also exhibit off‐responses.  相似文献   

14.
Recordings in the locust antennal lobe (AL) reveal activity-dependent, stimulus-specific changes in projection neuron (PN) and local neuron response patterns over repeated odor trials. During the first few trials, PN response intensity decreases, while spike time precision increases, and coherent oscillations, absent at first, quickly emerge. We examined this "fast odor learning" with a realistic computational model of the AL. Activity-dependent facilitation of AL inhibitory synapses was sufficient to simulate physiological recordings of fast learning. In addition, in experiments with noisy inputs, a network including synaptic facilitation of both inhibition and excitation responded with reliable spatiotemporal patterns from trial to trial despite the noise. A network lacking fast plasticity, however, responded with patterns that varied across trials, reflecting the input variability. Thus, our study suggests that fast olfactory learning results from stimulus-specific, activity-dependent synaptic facilitation and may improve the signal-to-noise ratio for repeatedly encountered odor stimuli.  相似文献   

15.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

16.
The antennal lobe is the primary processing center for olfactory information in insects. To understand further the neural circuitry of this brain area, we have investigated the distribution of γ-aminobutyric acid (GABA) and its colocalization with neuropeptides in the antennal lobe of the noctuid moth Heliothis virescens. Immunocytochemical experiments with an antiserum against GABA showed a large number of labeled somata in the antennal lobe; these somata were located exclusively in the lateral cell cluster. Stained neurites innervating all antennal-lobe glomeruli, including the male-specific macroglomerular complex, suggested a prominent role of GABA in processing olfactory information, including signals from pheromones, interspecifically acting odors, and plant odors. Fibers in two antennocerebral tracts (the middle and dorsal antennocerebral tract) exhibited prominent GABA immunoreactivity. Double-labeling experiments revealed that immunostaining for three neuropeptides, viz., A-type allatostatin, Manduca sexta allatotropin, and FMRFamide-related peptides, was largely colocalized with GABA in cell bodies of the lateral cell cluster. The general absence of peptide immunostaining in the antennocerebral tracts strongly indicated that these peptides were colocalized with GABA in local interneurons of the antennal lobe. In contrast, tachykinin-related peptides occurred in a distinct population of local antennal-lobe neurons that did not exhibit GABA immunostaining. Thus, local interneurons that were not GABAergic were present in the moth antennal lobe. This work was supported by the Norwegian University of Science and Technology (project no. 80902101).  相似文献   

17.
应用压力注射,在Agrotis segetum雄蛾触角叶(AL)中33个对性信息素有反应的MGC神经元上探计了对性信息素反应模式的形成机制,压力注射100mmol/L GABA进入AL神经网引起神经元一个慢的超极化电位,并有一个长时程的放电抑制相,与用性信息素刺激诱导的神经元分应很相似,但GABA并不影响神经元对性信息素刺激的去极化反应,低Cl^-溶液可减弱AL神经元对性信息素刺激的超极化反应,甚至使超极化相逆转为兴奋反应,抑制相消失。压力注射Bicuculline使神经元放电频率增加。压力注射Bicuculline的同时给予性信息素刺激,可使性信息素刺激所致的神经元放电增加进一步加强;Bicuculline可使性信息素刺激引起的神经元超极化幅度变小,放电抑制时间变短,甚至其抑制相完全被逆转为正常放电,无超极化反应和抑制相存在,结果表明,AL神经元对性信息系反应的超极化相与GABA受体有关。  相似文献   

18.
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process -lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations.  相似文献   

19.
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.  相似文献   

20.
Honey bees are a key-model in the study of learning and memory, because they show considerable learning abilities, their brain is well described and is accessible to a wide range of physiological recordings and treatments. We use in vivo calcium imaging to study olfactory perception in the bee brain, and combine this method to appetitive olfactory conditioning to unravel the neural substrates of olfactory learning. Odours are detected by receptor neurons on the antennae. Each receptor neuron projects to the first-order neuropile of the olfactory pathway, the antennal lobe, connecting to projection neurons in one of its 160 functional units, the glomeruli. In calcium imaging experiments, each odour elicits a particular activity pattern of antennal lobe glomeruli, according to a code conserved between individuals. The antennal lobe is also a site where the olfactory memory is formed. Using optical imaging, two studies have shown modulations of odour representation in the antennal lobe after learning, with different effects depending on the type of conditioning used. While simple differential conditioning (A + B- training) showed an increased calcium response to the reinforced odour, side-specific conditioning (A + B-/B + A- training) decorrelated the calcium responses of odours between brain sides. This difference may owe to the formation of different memories, which will be addressed in future work. By specifically staining antennal lobe neuronal subpopulations, we hope to be able in the future to study synaptic plasticity in the honey bee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号