首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Benzyladenine (BA) and short day (SD) induction promote and gibberellic acid (GA) inhibits flowering in Bougainvillea “San Diego Red.” GA is an overriding vegetative signal maintaining plants in a vegetative state even when BA is applied in SD conditions. SD promotes a more rapid conversion of BA to the ribotide and other “polar derivatives” (containing adenine derivatives). This effect of SD on BA metabolism is seen in root, stem, and apical bud tissues and is completely prevented by prior or simultaneous application of GA. GA treatment reduces the rate of polar derivative formation to that found in plants held in long days. The working hypothesis is that SD promotes flowering in Bougainvillea owing to reduced transport of gibberellins from leaves to roots and apical buds permitting metabolism of cytokinin, and perhaps other purine bases, to more polar forms that are more readily translocated and active in promoting reproductive development of the inflorescences axes.  相似文献   

2.
Excised elongating segments from 3-day-old soybean (Glycine max var. Wayne) seedlings radially enlarged when auxin-promoted elongation was mechanically inhibited. Growth was similar to segments treated with auxin plus cytokinin. This observation suggests that cytokinin does not necessarily directly “reorient” cell enlargement. Cytokinin-induced radial cell growth may be a secondary effect of cytokinin's inhibition of auxin-promoted elongation.  相似文献   

3.
Experiments were conducted to study the interaction of ethylene and the cytokinin N6-benzyladenine (BA) in promoting hypocotyl elongation in a dwarf strain of watermelon (Citrullus lanatus [Thunb] Matsu. and Nakai). Optimum promotion of hypocotyl elongation is elicited by an apical treatment with 0.2 microgram BA. At dosages above 0.3 microgram per apex, BA-enhancement of elongation is reduced concomitant with stimulation of ethylene production and lateral expansion of hypocotyls. Application of the ethylene biogenesis inhibitor, aminoethoxyvinylglycine, at dosages from 0.3 to 10 micrograms per apex inhibited BA-induced ethylene production. In seedlings treated with 0.2 microgram BA, 10 micrograms aminoethoxyvinylglycine per apex reduced ethylene production to about one-third of control levels and reduced BA stimulation of hypocotyl elongation by 74%. Exposure of watermelon seedlings to 60 ± 10 nanoliters per liter of ethylene in a flowing system nearly eliminated aminoethoxyvinylglycine inhibition of BA-promoted growth. The results suggest that physiological levels of internal ethylene are required for cytokinin promotion of hypocotyl elongation in watermelon.  相似文献   

4.
5.
A J Cary  W Liu    S H Howell 《Plant physiology》1995,107(4):1075-1082
Cytokinins have profound effects on seedling development in Arabidopsis thaliana. Benzyladenine (BA) inhibits root elongation in light- or dark-grown seedlings, and in dark-grown seedlings BA inhibits hypocotyl elongation and exaggerates the curvature of apical hooks. The latter are characteristic ethylene responses and, therefore, the possible involvement of ethylene in BA responses was examined in seedlings. It was found that the inhibitory effects of BA on root and hypocotyl elongation were partially blocked by the action of ethylene inhibitors or ethylene-resistant mutations (ein1-1 and ein2-1). Ethylene production was stimulated by submicromolar concentrations of BA and could account, in part, for the inhibition of root and hypocotyl elongation. It was demonstrated further that BA did not affect the sensitivity of seedlings to ethylene. Thus, the effect of cytokinin on root and hypocotyl elongation in Arabidopsis appears to be mediated largely by the production of ethylene. The coupling between cytokinin and ethylene responses is further supported by the discovery that the cytokinin-resistant mutant ckr1 is resistant to ethylene and is allelic to the ethylene-resistant mutant ein2.  相似文献   

6.
Changes in exudation rate and cytokinin activities in the exudates were measured in two varieties of rice (Oryza sativa L.), cv Nipponbare (a Japanese normal cultivar) and cv Akenohoshi (a high-yielding cultivar). The exudation rates of Akenohoshi, the leaves of which remained green for a longer time, were higher than those of Nipponbare after the booting stage. Cytokinin activities in the exudates of Akenohoshi were higher than those of Nipponbare during the ripening period. Cytokinins in the exudates collected during the middle of the ripening stage were analyzed with mass spectrometry using deuterium-labeled standards. trans-Zeatin, trans-ribosylzeatin, and N6-isopentenyladenosine were detected as free cytokinins, and zeatin was detected in the hydrolysates of highly polar fractions (“conjugated zeatin”) in the exudates of both cultivars. Conjugated zeatin was the predominant cytokinin in both cultivars. Therefore, we suggest that conjugated zeatin is an important form of cytokinin during the ripening stage. The level of each of the cytokinins in Akenohoshi was higher than that in Nipponbare. Also, we discuss the correlation between the leaf senescence and cytokinin content in root exudates.  相似文献   

7.
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by -naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.  相似文献   

8.
Cytokinins from the Moss Physcomitrella patens   总被引:6,自引:3,他引:3       下载免费PDF全文
Wang TL  Horgan R  Cove D 《Plant physiology》1981,68(3):735-738
Gametophore-over-producing mutants of the moss, Physcomitrella patens, when grown in liquid culture export high levels of cytokinin into their culture medium. The cytokinin produced by these mutants is postulated to account for their peculiar phenotype, that of mosses treated with exogenous cytokinin. N6-(Δ2-isopentenyl)adenine, the major cytokinin, has been identified previously in two of these mutants (Wang, Cove, Beutelmann, Hartmann 1980 Phytochemistry 19: 1103-1105) and now in additional representatives. A second cytokinin, zeatin, has been identified by its chromatographic behavior and mass spectrum including chemical ionization mass spectrometry of its permethyl derivative.  相似文献   

9.
Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone''s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation.  相似文献   

10.
The interactions between the plant hormones auxin and cytokinin throughout plant development are complex, and genetic investigations of the interdependency of auxin and cytokinin signaling have been limited. We have characterized the cytokinin sensitivity of the auxin-resistant diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) in a range of auxin- and cytokinin-regulated responses. Intact, etiolated dgt seedlings showed cross-resistance to cytokinin with respect to root elongation, but cytokinin effects on hypocotyl growth and ethylene synthesis in these seedlings were not impaired by the dgt mutation. Seven-week-old, green wild-type and dgt plants were also equally sensitive to cytokinin with respect to shoot growth and hypocotyl and internode elongation. The effects of cytokinin and the dgt mutation on these processes appeared additive. In tissue culture organ regeneration from dgt hypocotyl explants showed reduced sensitivity to auxin but normal sensitivity to cytokinin, and the effects of cytokinin and the mutation were again additive. However, although callus induction from dgt hypocotyl explants required auxin and cytokinin, dgt calli did not show the typical concentration-dependent stimulation of growth by either auxin or cytokinin observed in wild-type calli. Cross-resistance of the dgt mutant to cytokinin thus was found to be limited to a small subset of auxin- and cytokinin-regulated growth processes affected by the dgt mutation, indicating that auxin and cytokinin regulate plant growth through both shared and separate signaling pathways.  相似文献   

11.
Samimy C 《Plant physiology》1978,62(6):1005-1006
Development of dark-grown “Clark” soybean (Glycine max [L.] Merr.) seedlings is abnormal at 25 C but normal at 20 and 30 C. At 25 C, hypocotyls swell and fail to elongate normally; lateral root formation and seedling ethylene evolution are enhanced.

Co2+ promoted hypocotyl elongation of etiolated “Clark” soybean seedlings by 28% when grown at 25 C. The same growth-promoting concentration reduced hypocotyl thickness and primary root elongation by 28 and 43%, respectively. Co2+ inhibited ethylene production both of intact seedlings and of apical 1-centimeter hypocotyl segments with attached epicotyls and cotyledons by 65 and 60%, respectively. These results suggest that Co2+ exerts its effects on the hypocotyl growth by inhibiting ethylene production, and also confirm our previous conclusion that abnormal ethylene production at 25 C is responsible for the inhibition of hypocotyl elongation and for its swelling.

  相似文献   

12.
The influence of nitrate availability on growth of seminal roots, and root cytokinin levels, was studied in barley (Hordeum vulgare L. cv Golf). Nitrate was continuously supplied to initially N-starved seedlings at relative addition rates (RA) of 0.03 to 0.21 per day (standard cultures) or at RA 0.09 per day in split root cultures with the nitrate additions distributed in ratios of 100:0 or 80:20 to the two subroots. Data were collected both during a phase of acclimation (first 10 days of N additions) and in the acclimated stage (>10 days after onset of N additions). Limitation of whole-plant growth was observed at RA <0.15 per day. The lateral root frequency increased with RA in plants of equal chronological age. However, the lateral root frequency was related to root size rather than to RA; roots of uneven age but having comparable total root lengths also had comparable lateral root frequencies. Growth of individual subroots in split root systems during acclimation was proportional to the fraction of the total N addition that was fed to the root. All subroots had comparable relative growth rates in acclimated plants, and their lateral root frequency correlated with total root length in the same manner as in standard cultures. Onset of N additions in a 80:20 split root culture resulted in doublings of zeatin riboside (ZR) levels in shoots and in the “80” root, whereas the response of the “20” root was small. No effect of perturbed nitrate availability on xylem translocation of ZR was observed. The ZR levels remained higher in the “80” root during acclimation but returned to the level of the “20” root after acclimation. Root cytokinin levels and xylem translocation in acclimated standard cultures were unaffected by RA in the lower range but increased at high RA. Arguments for involvement of cytokinins in the nitrate-regulated growth response are discussed.  相似文献   

13.
Hydroxyproline-O-galactosyltransferase (GALT) initiates O-glycosylation of arabinogalactan-proteins (AGPs). We previously characterized GALT2 (At4g21060), and now report on functional characterization of GALT5 (At1g74800). GALT5 was identified using heterologous expression in Pichia and an in vitro GALT assay. Product characterization showed GALT5 specifically adds galactose to hydroxyproline in AGP protein backbones. Functions of GALT2 and GALT5 were elucidated by phenotypic analysis of single and double mutant plants. Allelic galt5 and galt2 mutants, and particularly galt2 galt5 double mutants, demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared to wild type. Mutant plants showed pleiotropic growth and development phenotypes (defects in root hair growth, root elongation, pollen tube growth, flowering time, leaf development, silique length, and inflorescence growth), which were most severe in the double mutants. Conditional mutant phenotypes were also observed, including salt-hypersensitive root growth and root tip swelling as well as reduced inhibition of pollen tube growth and root growth in response to β-Yariv reagent. These mutants also phenocopy mutants for an AGP, SOS5, and two cell wall receptor-like kinases, FEI1 and FEI2, which exist in a genetic signaling pathway. In summary, GALT5 and GALT2 function as redundant GALTs that control AGP O-glycosylation, which is essential for normal growth and development.  相似文献   

14.
Possible Involvement of Cytokinin in Nitrate-mediated Root Growth in Maize   总被引:1,自引:1,他引:0  
Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrate can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Nevertheless, less is known about the physiological mechanisms. In the present study, two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study a possible role of cytokinin in nitrate-mediated root growth in nutrient solutions. Root elongation of 478 was more sensitive to high nitrate supply than that of Wu312. Medium high nitrate (5 mM) inhibited root elongation in 478, while, root elongation in Wu312 was only inhibited at high NO 3 supply (20 mM). Under high nitrate supply, the root elongation zone in 478 became swollen and the site of lateral root elongation was close towards the root tip. Both of the phenomena are typical of root growth induced by exogenous cytokinin treatments. Correspondingly, zeatin and zeatin nucleotide (Z + ZR) concentrations were increased at higher nitrate supply in 478, whereas they were constant in Wu312. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. Therefore, it is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots. High nitrate supply may have negative influences on root apex activity by affecting cytokinin metabolism so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex. Nitrate suppressed lateral root elongation in Wu312 at concentration higher than 5 mM. In 478, however, this phenomenon was not significant even at 20 mM nitrate. Although exogenous 6-BA (20 nM) could suppress lateral root elongation as well, the inhibitory effect of high NO 3 concentration of nitrate on lateral root growth cannot be explained by changes in endogenous cytokinin alone.  相似文献   

15.
Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone.  相似文献   

16.
17.
Rice is cultivated in water-logged paddy lands. Thus, rice root hairs on the epidermal layers are exposed to a different redox status of nitrogen species, organic acids, and metal ions than root hairs growing in drained soil. To identify genes that play an important role in root hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified and isolated by using map-based cloning and sequencing. The mutation arose from a single amino acid substitution of OsSNDP1 (Oryza sativa Sec14-nodulin domain protein), which shows high sequence homology with Arabidopsis COW1/AtSFH1 and encodes a phosphatidylinositol transfer protein (PITP). By performing complementation assays with Atsfh1 mutants, we demonstrated that OsSNDP1 is involved in growth of root hairs. Cryo-scanning electron microscopy was utilized to further characterize the effect of the Ossndp1 mutation on root hair morphology. Aberrant morphogenesis was detected in root hair elongation and maturation zones. Many root hairs were branched and showed irregular shapes due to bulged nodes. Many epidermal cells also produced dome-shaped root hairs, which indicated that root hair elongation ceased at an early stage. These studies showed that PITP-mediated phospholipid signaling and metabolism is critical for root hair elongation in rice.  相似文献   

18.
Adenosine nucleosidase (adenosine ribohydrolase, EC 3.2.2.7) which catalyzes the deribosylation of N6-(Δ2-isopentenyl)adenosine and adenosine to form the corresponding bases was partially purified from wheat germ. This enzyme (molecular weight 59,000 ± 3,000) deribosylates the ribonucleosides at an optimum pH of 4.7 Km values for the cytokinin nucleoside and adenosine are 2.38 and 1.43 micromolar, respectively, in 50 millimolar Tris-citrate buffer (pH 4.7) at 30 C. The presence of adenosine and other cytokinin nucleosides inhibited the hydrolysis of N6-(Δ2-isopentenyl)adenosine but this reaction was insensitive to guanosine, uridine, or 3′-deoxyadenosine. It is hypothesized that an adequate level of “active cytokinin” in plant cells may be provided through the deribosylation of cytokinin riboside in concert with other cytokinin metabolic enzymes.  相似文献   

19.
20.
The molecular control of cell elongation, one of the basic processes of plant morphogenesis, is still largely not understood. This paper describes a Petunia hybrida mutant of dumpy phenotype, trapu, which identifies tra1, a gene required for cell elongation and mediating responses to applied cytokinin. This mutant displayed an extreme reduction in length, due to a single recessive mutation which was expressed in every part of the plant and during the entire life of the plant, including the mature embryo. The mutant was unable to flower. The mutant roots, as well as the leafy organs, were short and thick, and the root elongation zone, hypocotyl and petioles were absent. The mutant plantlets responded neither to applied auxin nor to gibberellin, indicating that this phenotype was not caused by a deprivation of these phytohormones. However, unlike the wildtype, the mutant growth was stimulated by applied cytokinin, even though its morphology remained abnormal. A histological study revealed the presence of all tissue types in normal positions, including root hairs and vascular bundles. The mutant's cells were rounder in every tissue. Both shoot and root meristems were disorganized, without consistent cell shape and size. The regular cell files, which are typical of a normal root apex organization, were totally absent in the mutant root apex. Indirect immunofluorescence of α-tubulin on root apices showed the cortical microtubules in the mutant cells to be unable to form the parallel arrays in elongating cells and the preprophase band in dividing cells. This default resulted in the prevention of unidirectional cell elongation and formation of regular cell files, thus causing the trapu phenotype. This paper discusses the similarities and differences of trapu to the Arabidopsis mutants, fass and ton, trapu confirming that the establishment of plant body pattern and differentiation can be dissociated from cell elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号