首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of DIP (an oxidant of glutathione) on 45Ca2+ net uptake induced by a variety of stimulators of insulin secretion was studied in rat pancreatic islets. In addition the effect of exogenous glutathione (GSH) on 45Ca2+ net uptake in response to glucose was tested. DIP (0.1 mM) inhibited the increase of 45Ca2+ net uptake in the presence of glucose (16.7 mM) and glyceraldehyde (10 mM). A similar inhibitory effect could be demonstrated, when 45Ca2+ net uptake was enhanced by tolbutamide (100 micrograms/ml), glibenclamide (0.5 micrograms/ml), b-BCH (20 mM), 2-ketoisocaproate (20 mM), arginine (20 mM) in the presence of 3 mM glucose or by high extracellular potassium (20 mM). The increase of 45Ca2+ net uptake stimulated by leucine (20 mM) plus glucose (3 mM) was further augmented by DIP. Exogenous GSH did not affect 45Ca2+ net uptake in the presence of (5.6-16.7 mM) glucose. It is suggested that 45Ca2+ net uptake of pancreatic islets depends on the redox state of islet thiols regardless of whether uptake is promoted via inhibition of potassium efflux (nutrients, sulfonylureas) or by high potassium and arginine. The voltage sensitive calcium-channel is the site of action of critical thiols. It is possible that these thiols are localized at the inner side of the plasma membrane.  相似文献   

2.
This study was undertaken to investigate the long-term effects of different substrates, in particular glucose, on the regulation of islet RNA metabolism and the relationship of this regulation to the metabolism and insulin production of the islet B-cell. For this purpose collagenase-isolated mouse islets were used either in the fresh state or after culture for 2 or 5 days in RPMI 1640 plus 10% calf serum supplemented with various test compounds. Islets cultured with 16.7 mM glucose contained more RNA than those cultured with 3.3 mM glucose. Culture of islets in glucose at low concentrations inhibited glucose-stimulated RNA synthesis and this inhibitory effect was reversed by prolonged exposure to high glucose concentrations. Culture with 10 mM leucine and 3.3 mM glucose or with 10 mM 2-ketoisocaproate and 3.3 mM glucose increased the total RNA content of islets as compared to that of islets cultured with 3.3 mM glucose alone. Islets cultured with 5 mM theophylline maintained a high RNA content in the presence of 3.3 mM glucose. Theophylline also increased the islet RNA content when added together with 16.7 mM glucose, as compared to 16.7 mM glucose alone. Theophylline probably exerted this effect by decreasing the rate of RNA degradation. Changes in islet RNA metabolism showed a close correlation to changes in islet total protein biosynthesis, whereas islet (pro)insulin biosynthesis and insulin release exhibited different glucose-dependency patterns. The response of islet oxygen uptake to glucose was similar to that of islet RNA and protein biosynthesis. It is concluded that the RNA content of the pancreatic islets is controlled at the levels of both synthesis and degradation. Glucose stimulates the RNA synthesis and inhibits its degradation. Moreover, the results suggest that regulation of RNA synthesis may be mediated through islet metabolic fluxes and the cAMP system.  相似文献   

3.
In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86Rb+ efflux, and 45Ca++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86Rb+ efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was no longer any insulin responsiveness to glucose. The 45Ca++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45Ca++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium (86Rb+) efflux may not be related to changes of NADPH and GSH.  相似文献   

4.
Liquid membrane [K+]-sensitive microelectrodes (1-2 micron tip diameter) were used to measure the extracellular ionized potassium concentration in mouse pancreatic islets of Langerhans. With the tip of the microelectrode at the surface of the islet, the time course of the [K+]-sensitive electrode potential changes in response to the application of rapid changes in [K+]o (from 1.25 to 5 mM), could be reproduced by the equation for K+-diffusion through a 100-micron-thick unstirred layer around the islet (diffusion coefficient for K+ at 27 degrees C, DK,o, taken as 1.83 X 10(-5) cm2/s). The time to reach 63% of the steady-state electrode response with the tip in the chamber at the surface of the islet was from 5 to 6 s. When the tip of the [K+]-sensitive electrode was placed in the islet tissue, the time for the response to reach 63% of the steady-state level increased. The time course of the [K+]-sensitive electrode response could be reproduced using the same diffusion model assuming that K+ diffusion into the islet tissue takes place in a tortuous intercellular path with an apparent diffusion coefficient, DK,I, about half of DK,o, in series with the unstirred layer around the islet. In the absence of glucose the potassium concentration in the extracellular space, [K+]I, was found to be higher than the concentration in the external modified Krebs solution, [K+]o. The difference in concentration [K+]I - [K+]o was greater when [K+]o was smaller than 2 mM. In the presence of glucose (between 11 and 16 mM), under steady-state conditions, small oscillatory changes in the [K+], (1.48 +/- 0.94 mM) were detected. Simultaneous recording of membrane potential from one B-cell and [K+], in the same islet indicated that the potassium concentration increased during the active phase of the bursts of electrical activity. Maximum concentration in the intercellular was reached near the end of the active phase of the bursts. We propose that the space between islet cells constitutes a restricted diffusion system where potassium accumulates during the transient activation of potassium channels.  相似文献   

5.
Atrial natriuretic peptide (ANP) levels correlate with hyperglycemia in diabetes mellitus, but ANP effects on pancreatic islet β-cell insulin secretion are controversial. ANP was investigated for short- and long-term effects on insulin secretion and mechanisms regulating secretion in isolated rat pancreatic islets. A 3-h incubation with ANP did not affect basal or glucose-stimulated islet insulin secretion. However, 7-day culture of islets with 5.5 mM glucose and ANP (1 nM - 1 μM) markedly inhibited subsequent glucose (11 mM)-stimulated insulin secretion; total islet insulin content was not affected. Following ANP removal for 24 h, the islet insulin-secretory response to glucose was restored. The insulin-secretory response to other insulin secretagogues, including α-ketoisocaproic acid, forskolin, potassium chloride, and ionomycin were also markedly inhibited by chronic exposure to ANP. However, the combination of potassium chloride and α-ketoisocaproic acid was sufficient to overcome the inhibitory effects of ANP on insulin secretion. The glucose-stimulated increases in islet ATP levels and the ATP/ADP ratio were completely inhibited in ANP 7-day-treated islets vs. control; removal of ANP for 24 h partially restored the glucose response. ANP did not affect islet glycolysis. ANP significantly increased levels of islet activated hormone-sensitive lipase and the expression of uncoupling protein-2 and peroxisome proliferator-activated receptor-δ and -α. Although islet ANP-binding natriuretic peptide receptor-A levels were reduced to 60% of control after 7-day culture with ANP, the ANP-stimulated cGMP levels remained similar to control islet levels. Thus, long-term exposure to ANP inhibits glucose-stimulated insulin secretion and ATP generation in isolated islets.  相似文献   

6.
The effects of arginine-vasopressin (AVP) on hormone release by the endocrine pancreas have been studied with incubated islets from normal mice. A wide range of AVP concentrations (1 pM-100 nM) were tested in the presence of various glucose concentrations. AVP did not affect somatostatin release in a glucose-free medium but increased it in the presence of all tested glucose concentrations (3-30 mM). The lowest effective concentration was 1 mM and the effect was not yet maximal at 100 nM AVP. AVP markedly increased glucagon release in the absence of glucose. Its effect was attenuated but not abolished when glucagon release was inhibited by glucose. Surprisingly, the attenuation of the effect of AVP was stronger in 3-10 mM than in 15-30 mM glucose. The lowest effective concentration was 1 nM and the effect was not yet maximal at 100 nM AVP. AVP was ineffective on basal insulin release (0, 3 and 7 mM glucose), but potentiated the effect of 10, 15 and 30 mM glucose. The lowest effective concentration was 0.1-1 nM AVP and the maximal effect was produced by 10-100 nM AVP. The results suggest a direct action of AVP on each of the three islet cell types which display a roughly similar sensitivity to the peptide. This sensitivity is too low to make islet cells a possible target for circulating AVP under physiological conditions. On the other hand, the presence of AVP in the pancreas suggests that it might be involved in the peptidergic control of islet function.  相似文献   

7.
We determined the anomeric preference of glucose phosphorylation by islet glucokinase, glucose utilization by pancreatic islets, and insulin secretion induced by glucose over a wide range of glucose concentrations. alpha-D-Glucose was phosphorylated faster than beta-D-glucose by islet glucokinase at lower glucose concentrations (5 and 10 mM), whereas the opposite anomeric preference was observed at higher glucose concentrations (40 and 60 mM). At 20 mM, there was no significant difference in phosphorylation rate between the two anomers. Similar patterns of anomeric preference were observed both in islet glucose utilization and in glucose-induced insulin secretion. The present study affords strong evidence that glucokinase is responsible for the anomeric preference of glucose-stimulated insulin secretion through anomeric discrimination in islet glucose utilization.  相似文献   

8.
Hexose metabolism in pancreatic islets. Inhibition of hexokinase.   总被引:4,自引:0,他引:4       下载免费PDF全文
In islet homogenates, hexokinase-like activity (Km 0.05 mM; Vmax. 1.5 pmol/min per islet) accounts for the major fraction of glucose phosphorylation. Yet the rate of glycolysis in intact islets incubated at low glucose concentrations (e.g. 1.7 mM) sufficient to saturate hexokinase only represents a minor fraction of the glycolytic rate observed at higher glucose concentrations. This apparent discrepancy between enzymic and metabolic data may be attributable, in part at least, to inhibition of hexokinase in intact islets. Hexokinase, which is present in both islet and purified B-cell homogenates, is indeed inhibited by glucose 6-phosphate (Ki 0.13 mM) and glucose 1,6-bisphosphate (Ki approx. 0.2 mM), but not by fructose 2,6-bisphosphate. In intact islets, the steady-state content of glucose 6-phosphate (0.26-0.79 pmol/islet) and glucose 1,6-bisphosphate (5-48 fmol/islet) increases, in a biphasic manner, at increasing concentrations of extracellular glucose (up to 27.8 mM). From these measurements and the intracellular space of the islets, it was estimated that the rate of glucose phosphorylation as catalysed by hexokinase represents, in intact islets, no more than 12-24% of its value in islet homogenates.  相似文献   

9.
The relationship between islet tissue NADH and insulin release resulting from glucose or acetylcholine was investigated with the isolated perfused rat pancreas. Switching the perfusate from 4 to 16 mM glucose or adding 1 μM acetylcholine to 4.4 mM basal glucose elicited biphasic insulin release and rapidly elevated the NADH content of islet tissue, suggesting that intermediary metabolism was stimulated. The biochemical basis for this NADH increase and its significance in islet physiology are discussed.  相似文献   

10.
Hexosamines serve a nutrient-sensing function through enzymatic O-glycosylation of proteins. We previously characterized transgenic (Tg) mice with overexpression of the rate-limiting enzyme in hexosamine production, glutamine:fructose-6-phosphate amidotransferase, in beta-cells. Animals were hyperinsulinemic, resulting in peripheral insulin resistance. Glucose tolerance deteriorated with age, and males developed diabetes. We therefore examined islet function in these mice by perifusion in vitro. Young (2-mo-old) Tg animals had enhanced sensitivity to glucose of insulin secretion. Insulin secretion was maximal at 20 mM and half maximal at 9.9 +/- 0.5 mM glucose in Tg islets compared with maximal at 30 mM and half maximal at 13.5 +/- 0.7 mM glucose in wild type (WT; P < 0.005). Young Tg animals secreted more insulin in response to 20 mM glucose (Tg, 1,254 +/- 311; WT, 425 +/- 231 pg x islet(-1) x 35 min(-1); P < 0.01). Islets from older (8-mo-old) Tg mice became desensitized to glucose, with half-maximal secretion at 16.1 +/- 0.8 mM glucose, compared with 11.8 +/- 0.7 mM in WT (P < 0.05). Older Tg mice secreted less insulin in response to 20 mM glucose (Tg, 2,256 +/- 342; WT, 3,493 +/- 367 pg x islet(-1) x 35 min(-1); P < 0.05). Secretion in response to carbachol was similar in WT and Tg at both ages. Glucose oxidation was blunted in older Tg islets. At 5 mM glucose, islet CO2 production was comparable between Tg and WT. However, WT mice increased islet CO2 production 2.7 +/- 0.4-fold in 20 mM glucose, compared with only 1.4 +/- 0.1-fold in Tg (P < 0.02). Results demonstrate that hexosamines are involved in nutrient sensing for insulin secretion, acting at least in part by modulating glucose oxidation pathways. Prolonged excess hexosamine flux results in glucose desensitization and mimics glucose toxicity.  相似文献   

11.
Effects of prostaglandin D2 on pancreatic islet function in perfused rat pancreas were examined in comparison with those of prostaglandin E2, which has hitherto been suggested to be a modifier of pancreatic hormone release. In the presence of 2.8 mM glucose, only glucagon release was strongly stimulated by 14 microM of prostaglandin D2, while release of both glucagon and insulin was augmented by 14 microM of prostaglandin E2. When the glucose concentration was elevated to 11.2 mM, insulin release was accelerated by 14 microM of prostaglandin D2 but there was no effect upon glucagon release. Again, release of both glucagon and insulin was augmented by 14 microM of prostaglandin E2 in the presence of 11.2 mM of glucose. The regulation of glucagon and insulin release through prostaglandin D2 is apparently adapted to glycemic changes, and may be a physiological modulator of pancreatic islet function.  相似文献   

12.
Rat pancreatic islets were used for studying the effects of depolarization on their sodium content. The islet sodium was markedly affected by small variations of extracellular K+. As with increased K+, the presence of low concentrations of glucose (5 mM) and arginine (2 mM) decreased the sodium content. The latter substances did not lower the sodium concentration below the value obtained by depolarization with excessive K+, nor was it possible to obtain a further decrease when 10 mM arginine was combined with 5 mM glucose. The sodium content was also reduced in the presence of 10 mM L-leucine, 10 mM 2-ketoisocaproate and 0.1 mM Ba2+. Tolbutamide differed from the other depolarizing agents in that it increased the sodium concentration, an effect manifested also in the presence of excessive K+. The observation that depolarizing agents other than sulfonylureas do not increase but actually reduce sodium implies that islet cells are exceptional among electrically excitable cells. The observed reduction of sodium may reflect activation of a voltage-sensitive carrier mechanism for outward transport of Na+.  相似文献   

13.
The regulatory role of cyclic AMP (cAMP) in the growth and insulin production of the islet organ in vitro has been investigated. The effects of dibutyryl cyclic AMP (dbcAMP), theophylline , and 3-isobutyl-1-methylxanthine (IBMX) on DNA replication and on the biosynthesis of RNA and insulin in fetal rat islets of Langerhans maintained in tissue culture have been studied. Raising the glucose concentration from 2.7 mM to 16.7 mM caused a two-fold increase in DNA replication. Both dbcAMP and theophylline markedly inhibited the DNA replication at all glucose Concentrations studied. Low concentrations of IBMX stimulated DNA synthesis. However, at higher concentrations of this drug, known to considerably increase the islet cAMP levels , a marked inhibition of islet DNA replication was observed. Both (pro)insulin and total protein biosynthesis were stimulated by glucose, whereas dbcAMP stimulated only the (pro)insulin biosynthesis. Since glucose is known to raise islet intracellular levels of cAMP, which is known to be an inhibitor of cellular proliferation, the observed glucose stimulation of both islet-cell DNA replication and insulin production appeared conflicting. It is suggested that this dual effect of glucose may depend on a stimulation of proliferation in a limited pool of islet cells which may not exhibit an increase in cAMP.  相似文献   

14.
Nitric oxide (NO) is believed to play an important role in pancreatic islet physiology and pathophysiology. Research in this area has been hampered, however, by the use of indirect methods to measure islet NO. To investigate the role of NO in islet function, we positioned NO-sensitive, recessed-tip microelectrodes in close proximity to individual islets and monitored oxidation current to detect subnanomolar NO in the bath. NO release from islets consisted of a series of rapid bursts lasting several seconds and/or slow oscillations with a period of approximately 100-300 s. Average baseline NO near the islets in 2.8 mM glucose was 524+/-59 nM (n=12). Raising glucose from 2.8 to 11.1 mM augmented NO release by 429+/-133 nM (n=12, P<0.05), an effect blocked by the NO synthase inhibitor L-NAME (n=3). We also observed that glucose-stimulated increases in NO release were contemporaneous with changes in NAD(P)H and O2 but occurred well before increases in calcium associated with glucose-stimulated insulin secretion. In summary, we demonstrate that NO release from islets is oscillatory and rapidly augmented by glucose, suggesting that NO release occurs early following an increase in glucose metabolism and may contribute to the stimulated insulin secretion triggered by suprathreshold glucose.  相似文献   

15.
The acute and chronic effects of 20 mM glucose and 10 microM carbachol on beta-cell responses were investigated. Acute exposure of rat islets to 20 mM glucose increased glucose usage rates and resulted in a large insulin-secretory response during a dynamic perifusion. The secretory, but not the metabolic, effect of 20 mM glucose was abolished by simultaneous exposure to 100 microM diazoxide. Glucose (20 mM) significantly increased inositol phosphate (IP) accumulation, an index of phospholipase C (PLC) activation, from [(3)H]inositol-prelabeled islets. Diazoxide, but not atropine, abolished this effect as well. Unlike 20 mM glucose, 10 microM carbachol (in the presence of 5 mM glucose) increased IP accumulation but had no effect on insulin secretion or glucose (5 mM) metabolism. The IP effect was abolished by 50 microM atropine but not by diazoxide. Chronic 3-h exposure of islets to 20 mM glucose or 10 microM carbachol profoundly reduced both the insulin-secretory and PLC responses to a subsequent 20 mM glucose stimulus. The adverse effects of chronic glucose exposure were abolished by diazoxide but not by atropine. In contrast, the adverse effects of carbachol were abolished by atropine but not by diazoxide. Prior 3 h of exposure to 20 mM glucose or carbachol had no inhibitory effect on glucose metabolism. Significant secretory responses could be evoked from 20 mM glucose- or carbachol-pretreated islets by the inclusion of forskolin. These findings support the concept that an early event in the evolution of beta-cell desensitization is the impaired activation of islet PLC.  相似文献   

16.
K Yoshida  S Kagawa  K Murakoso  A Matsuoka 《In vitro》1984,20(10):756-762
The effect of 2-deoxy-D-glucose on maintenance in culture of B cells of the neonatal rat was examined by supplementation of Medium 199 containing 5.5 mM glucose with 1 mM 2-deoxy-D-glucose. Islets maintained in medium with 5.5 mM glucose (basal medium) for 7 d underwent remarkable decreases in glucose sensitivity, and the levels of insulin in the medium dropped. By contrast, addition of 2-deoxy-D-glucose promoted a higher insulin content in medium and an increase in the glucose-induced insulin release and biosynthesis. Moreover, the addition of the deoxysugar caused a selective deletion of fibroblasts and prevented the deterioration of islet cells in basal medium, yielding clusters mostly consisting of islet cells at the end of culture.  相似文献   

17.
Insulin release, net fluxes of Ca2+, and glucose metabolism were studied in a clonal cell line (RINmSF) established from a transplantable rat islet tumor. The insulin content amounted to only 0.03% of that of the total protein and decreased even further with subsequent passages. The insulin secretion was as high as 10 to 20% of the total hormone content per hour. Insulin release was stimulated by K+ depolarization but not by exposure to glucose. In contrast to this secretory pattern, glucose but not K+ stimulated the net uptake of Ca2+ at micromolar concentrations of the ion. The glucose effect was not mimicked by 20 mM 3-O-methylglucose. It was as pronounced at 1 mM as at 20 mM of the sugar and corresponded to an uptake of 119 fmol cm–2 s–1. Glucose metabolism was typical for tumor cells with a high glycolytic flux and an oxidationtoutilization ratio as low as 0.05–0.15. Maximal oxidative degradation was attained already at l mM. This concentration was also equivalent to the Km for glucose utilization, indicating a substantial left-hand shift of the normal dose-response curve. It is suggested that glucose induces a depolarizationindependent net uptake of Ca2+ by favouring intracellular buffering of the cation.  相似文献   

18.
The transport of Cd2+ and the effects of this ion on secretory activity and metabolism were investigated in beta cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The endogenous cadmium content was 2.5 mumol/kg dry wt. After 60 min of incubation in a Ca2+-deficient medium containing 2.5 microM Cd2+ the islet cadmium content increased to 0.18 mmol/kg dry wt. This uptake was reduced by approx. 50% in the presence of 1.28 mM Ca2+. The incorporation of Cd2+ was stimulated either by raising the concentration of glucose to 20 mM or K+ to 30.9 mM. Whereas D-600 suppressed the stimulatory effect of glucose by 75%, it completely abolished that obtained with high K+. Only about 40% of the incorporated cadmium was mobilized during 60 min of incubation in a Cd2+-free medium containing 0.5 mM EGTA. It was possible to demonstrate a glucose-induced suppression of Cd2+ efflux into a Ca2+-deficient medium. Concentrations of Cd2+ up to 2.5 microM did not affect glucose oxidation, whereas, there was a progressive inhibition when the Cd2+ concentration was above 10 microM. Basal insulin release was stimulated by 5 microM Cd2+. At a concentration of 160 microM, Cd2+ did not affect basal insulin release but significantly inhibited the secretory response to glucose. It is concluded that the beta cell uptake of Cd2+ is facilitated by the activation of voltage-dependent Ca2+ channels. Apparently, the accumulation of Cd2+ mimics that of Ca2+ also involving a component of intracellular sequestration promoted by glucose.  相似文献   

19.

Background

The possible participation of endogenous islet catecholamines (CAs) in the control of insulin secretion was tested.

Methods

Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT), a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I]) and α1-adrenergic antagonists (prazosin [P] and terazosin [T]) upon insulin secretion elicited by high glucose.

Results

Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p < 0.02), but did not affect significantly the insulin response to low glucose. A similar enhancing effect of MIT upon insulin secretion was obtained using precultured islets devoid of neural cells, but absolute values were lower than those from fresh islets, suggesting that MIT inhibits islet rather than neural tyrosine hydroxylase. CAs concentration in the incubation media of fresh isolated islets was significantly higher in the presence of 16.7 than 3.3 mM glucose: dopamine 1.67 ± 0.13 vs 0.69 ± 0.13 pg/islet/h, p < 0.001, and noradrenaline 1.25 ± 0.17 vs 0.49 ± 0.04 pg/islet/h, p < 0.02. Y and I enhanced the release of insulin elicited by 16.7 mM glucose while P and T decreased such secretion.

Conclusion

Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.  相似文献   

20.
The effects of quinine and 9-aminoacridine, two blockers of potassium conductance in islet cells, on 45Ca efflux and insulin release from perifused islets were investigated in order to elucidate the mechanisms by which glucose initially reduces 45Ca efflux and later stimulates calcium inflow in islet cells. In the absence of glucose, 100 μM quinine stimulated 45Ca net uptake, 45Ca outflow rate and insulin release. Quinine also dramatically enhanced the cationic and the secretory response to intermediate concentrations of glucose, but had little effect on 45Ca net uptake, 45Ca fractional outflow rate and insulin release at a high glucose concentration (16.7 mM). The ability of quinine to stimulate 45Ca efflux depended on the presence of extracellular calcium, suggesting that it reflects a stimulation of calcium entry in the islet cells. In the absence of extracellular calcium, quinine provoked a sustained decrease in 45Ca efflux. Such an inhibitory effect was not additive to that of glucose, and was reduced at low extracellular Na+ concentration. At a low concentration (5 μM), quinine, although reducing 86Rb efflux from the islets to the same extent as a non-insulinotropic glucose concentration (4.4 mM), failed to inhibit 45Ca efflux. In the presence of extracellular calcium, 9-aminoacridine produced an important but transient increase in 45Ca outflow rate and insulin release from islets perifused in the absence of glucose. In the absence of extracellular calcium, 9-aminoacridine, however, failed to reduced 45Ca efflux from perifused islets. It is concluded that quinine, by reducing K+ conductance, reproduces the effect of glucose to activate voltage-sensitive calcium channels and to stimulate the entry of calcium into the B-cell. However, the glucose-induced inhibition of calcium outflow rate, which may also participate in the intracellular accumulation of calcium, does not appear to be mediated by changes in K+ conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号