首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
cDNA of a novel Ras-related GTP-binding protein was isolated from rat tissue by a PCR-based cloning approach, and was designated Rab29 because its deduced amino acid sequence (204 aa) is remotely similar to that of members of the Rab family (30% identity with Rab1). mRNA of Rab29 was found predominately in kidney. Recombinant Rab29 exhibited rapid exchange of bound guanine nucleotides for radiolabeled GTP but lacked a detectable intrinsic GTPase activity. A second cDNA clone was isolated which contained a 287 bp in-frame insertion with characteristics of an intron sequence; this insertion introduces a stop codon after arginine 167. The recombinant protein (Rab29Δ37) derived from the cDNA carrying the insertion was loaded with GTP during biosynthesis, but showed almost no exchange of the nucleotide for radiolabeled GTP. Thus, the C-terminus of Rab29 appears to harbor a structural element which is essential for the nucleotide exchange of the protein.  相似文献   

5.
Identification of the GTP-binding proteins from human platelet particulate fractions was attained by their purification via successive column chromatography steps followed by amino acid sequencing. To enhance the likelihood of identifying the GTP-binding proteins, two assays were employed to monitor GTP-binding activities: (i) guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding followed by rapid filtration and ii) [alpha-32P]GTP-binding following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting onto nitrocellulose membranes. The latter assay permitted the isolation of a 28-kDa GTP-binding protein that bound [alpha-32P]GTP prominently but was only poorly detected with the GTP gamma S-binding assay. The amino acid sequences of three peptide fragments derived from the 28-kDa protein were identical to regions of the amino acid sequence deduced from a simian ral cDNA with the exception of one conservative substitution (Asp147----Glu). A full length human ral cDNA was isolated from a placental cDNA library, and its deduced amino acid sequence, compared with simian ral, also contained the Asp----Glu substitution along with two other substitutions and an additional three NH2-terminal amino acids. In addition to the 28-kDa protein, two distinct 25-kDa GTP-binding proteins were purified from platelets. One of these proteins has been previously characterized as G25K, an abundant low molecular mass GTP-binding protein. Partial amino acid sequence obtained from the second unidentified 25-kDa protein indicates that it is the product of the rac1 gene; a member of a newly identified gene family which encode for low molecular mass GTP-binding proteins (Didsbury, J., Weber, R.F., Bokoch, G. M., Evans, T., and Snyderman, R. (1989) J. Biol. Chem. 264, 16378-16382). These results identify two new GTP-binding proteins in human platelets, ral, the major protein that binds [alpha-32P]GTP on nitrocellulose transfers, and rac1, a substrate for botulinum C3 ADP-ribosyltransferase.  相似文献   

6.
7.
A cDNA encoding the nonmuscle-specific (type B) subunit of phosphoglycerate mutase (PGAM-B) was isolated and characterized. A cDNA probe, synthesized by the polymerase chain reaction (PCR) from rat liver cell mRNA using mixed primers specific to the amino acid sequence of human PGAM-B, was used to screen a rat liver cell cDNA library. The identity of the cDNA was confirmed by amino acid sequence data for 24 peptides obtained by digesting the purified protein with three different endopeptidases. The coding region encoded a polypeptide composed of 253 amino acid (plus the initiator Met). RNA blot analysis showed a single mRNA species of 1.7 kilobases in rat liver cell. The deduced amino acid sequence of rat PGAM-B was identical to that of human PGAM-B except for only one substitution at position 251 near the carboxyl terminus (valine for the rat and alanine for the human).  相似文献   

8.
A cDNA was isolated from the shrimp Penaeus japonicus by homology cloning. Similar to the mammalian Ras proteins, this shrimp hepatopancreas cDNA encodes a 187-residue polypeptide whose predicted amino acid sequence shares 85% homology with mammalian KB-Ras proteins and demonstrates identity in the guanine nucleotide binding domains. Expression of the cDNA of shrimp in Escherichia coli yielded a 25-kDa polypeptide with positive reactivity toward the monoclonal antibodies against Ras of mammals. As judged by nitrocellulose filtration assay, the specific GTP binding activity of ras-encoded p25 fusion protein was approximately 30,000 units/mg of protein, whereas that of GDP was 5,000 units/mg of protein. In other words, the GTP bound form of ras-encoded p25 fusion protein prevails. Fluorography analysis demonstrated that the prenylation of both shrimp Ras-GDP and shrimp Ras-GTP by protein geranylgeranyltransferase I of shrimp Penaeus japonicus exceeded that of nucleotide-free form of Ras by 10-fold and four-fold, respectively. That is, the protein geranylgeranyl transferase I prefers to react with ras-encoded p25 fusion protein in the GDP bound form.  相似文献   

9.
Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicates a model for the interaction of mammalian GTP cyclohydrolase I with its regulator, GFRP. Kinetic investigations of human GTP cyclohydrolase I in complex with rat and human GFRP showed similar regulatory effects of both GFRP proteins.  相似文献   

10.
We have characterized a novel type I ribosome-inactivating protein (CAP30) from the leaves of Chenopodium album. Purified native CAP30 depurinated the ribosomes of Chenopodium, tomato, and tobacco leaves in vitro. To further characterize this protein, cDNA clones were isolated from a leaf cDNA library using a DNA probe derived from the N-terminal amino acid sequence. Two full-length cDNA clones, CAP30A and CAP30B, were isolated. The two clones were highly homologous (91.4% identity over 280 amino acids) at the deduced amino acid level. Both contain a putative signal peptide of 25 amino acid and a conserved domain commonly found in ribosome-inactivating proteins. This suggests that CAP30 is a single-chain ribosome-inactivating protein. Expression of CAP30 mRNA peaked twice, at 12 and 72 h, after tobacco mosaic virus (TMV) infection or wounding. Transformed Escherichia coli cells expressing pre- or mature CAP had greatly reduced growth rates. These results suggest that CAP30 functions as a broad-spectrum defense-related protein with both antiviral and anti-microbial activity.  相似文献   

11.
The human T lymphocyte Ag CD28 (Tp44) is a homodimeric glycoprotein expressed on the surface of a majority of human peripheral T cells and thymocytes. Although exposure of T cells to anti-CD28 mAb does not activate T cells, stimulation of CD28 can synergize with signals transmitted through the TCR or other stimuli to augment proliferation and lymphokine production. We have used a portion of the human CD28 cDNA to isolate a homologous murine cDNA from an EL4 T lymphoma library. The murine clone has 61% nucleotide identity with the human cDNA. Both human and murine sequences exhibit homology with members of the Ig supergene family and CTLA-4, a T cell specific murine gene. Many characteristics of the human CD28 molecule are conserved within the putative murine CD28 polypeptide. The murine cDNA sequence encodes a polypeptide of 218 amino acids that has 68% identity with the human sequence. Both the murine and human molecules are integral membrane glycoproteins with hydrophobic signal peptide sequences and transmembrane region. All five potential N-linked glycosylation sites are conserved and six of the seven cysteine residues of the mouse protein are found in the human CD28 polypeptide. The murine cDNA is encoded by a single copy nonrearranging gene whose expression at the mRNA level is restricted to T cells. A rabbit antiserum was raised against a synthetic peptide corresponding to a hydrophilic portion of the translated murine cDNA sequence. This antiserum identifies an 80-kDa homodimer consisting of disulfide-bonded subunits of 40 kDa that is expressed on splenic T cells, thymocytes, and several T cell tumors, but not on B cells. deglycosylation studies indicate that four of the five N-linked glycosylation sites are used and that the mature core protein has a molecular mass of 25 kDa, close to that predicted by the cDNA sequence. Transfection of the murine cDNA into Chinese hamster ovary cells resulted in the expression of an 80-kDa dimeric molecule that was immunoprecipitated by the antipeptide antiserum. Taken together, these data provide strong support that we have identified the murine homologue of CD28.  相似文献   

12.
The cellular origin and the control of neopterin release associated with immune stimulation was studied in cell cultures. Using purified human mononuclear cells, the intracellular change in concentrations of GTP and pterins was measured under various kinds of stimulation. Three enzymes involved in tetrahydrobiopterin biosynthesis, i.e. GTP cyclohydrolase I, 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase, were also determined. Human macrophages stimulated with culture supernatant from activated T-lymphocytes were the main producers of neopterin. In these cells, GTP cyclohydrolase I activity was elevated due to high GTP levels and therefore neopterin accumulated. Human macrophages lack 6-pyruvoyl tetrahydropterin synthase activity. Exogenous tetrahydrobiopterin added to the culture medium of stimulated T cells and macrophages suppressed the elevation of GTP cyclohydrolase I activity and neopterin concentration, but not the elevation of intracellular GTP. Stimulation of macrophages with recombinant human interferon-gamma and neutralization of the effect of T cell supernatants by addition of a monoclonal antibody specific for human interferon-gamma showed that immune interferon induced the alterations in GTP cyclohydrolase I activity and neopterin concentration. In the human macrophage line U-937 and in the leukemia line HL-60, no GTP cyclohydrolase I activity or intracellular pterins were detected, but high levels of GTP. In mouse mononuclear cells, no neopterin was detected, but biopterin and pterin. After stimulation, biopterin was elevated in the same way as neopterin in human mononuclear cells. This is explained by the different regulation of the rate-limiting steps of tetrahydrobiopterin biosynthesis in man and in mouse. These results suggest that neopterin is an unspecific marker for the activation of the cellular immune system.  相似文献   

13.
14.
GTP cyclohydrolase I exhibits a positive homotropic cooperative binding to GTP, which raises the possibility of a role for GTP in regulating the enzyme reaction (Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y., and Kagamiyama, H. (1989) J. Biol. Chem. 264, 21660-21664). We examined whether or not the intracellular GTP level is within the range of affecting GTP cyclohydrolase I activity, using PC-12 rat pheochromocytoma and IMR-32 human neuroblastoma cells. Since GTP cyclohydrolase I was the rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in these cell lines, the intracellular activities of this enzyme were reflected in the tetrahydrobiopterin contents. We found that the addition of guanine or guanosine increased GTP but not tetrahydrobiopterin in these cells. On the other hand, three IMP dehydrogenase inhibitors, tiazofurin, 2-amino-1,3,4-thiadiazole, and mycophenolic acid, decreased both GTP and tetrahydrobiopterin in a parallel and dose-dependent manner, and these effects were reversed by the simultaneous addition of guanine or guanosine. There was no evidence suggesting that these inhibitors inhibited other enzymes involved in the biosynthesis and regeneration of tetrahydrobiopterin. Comparing intracellular activities of GTP cyclohydrolase I in the inhibitor-treated cells with its substrate-velocity curve, we estimated that the intracellular concentration of free GTP is 150 microM at which point the activity of GTP cyclohydrolase I is elicited at its maximum velocity. Below this GTP concentration, GTP cyclohydrolase I activity is rapidly decreased. Therefore GTP can be a regulator for tetrahydrobiopterin biosynthesis.  相似文献   

15.
GTP cyclohydrolase I, an enzyme that catalyzes the first step in the biosynthetic pathway of tetrahydrobiopterin, has been purified about 38,000-fold to apparent homogeneity from rat liver extract with a yield of 5%. The molecular weight of the enzyme was estimated to be 300,000 by gel filtration on Ultrogel AcA 34. The purified enzyme gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at a position corresponding to a molecular weight of 30,000. N-terminal amino acid sequence analysis gave a single amino acid at every step of the Edman degradation up to residue 10. These results suggest that the enzyme is probably a homopolymer. The enzyme showed positive cooperativity with a Hill coefficient of 2.4 at a substrate (GTP) concentration of 10-50 microM. The Vmax value of the enzyme was 45 nmol/min.mg protein. The GTP concentration producing half-maximal velocity was 30 microM at a KCl concentration of 0.1 M. This value increased as the KCl concentration rose, without any change in Vmax or Hill number. Biosynthesis of tetrahydrobiopterin may be controlled by the intracellular level of GTP.  相似文献   

16.
DNA clones encoding chicken T-protein of the glycine cleavage system were isolated from chicken liver lambda gt10 cDNA libraries. Three overlapping clones provided an open reading frame of 1176 nucleotides that predicts a polypeptide of 392 amino acids (M(r) 42,056) comprised of a 16-residue mitochondrial targeting sequence and a 376-residue mature protein (M(r) 40,292). The amino acid sequence predicted for the mature protein showed 67% identity with that of bovine T-protein. A cDNA encoding mature T-protein was constructed, and the nucleotide sequence just downstream of the initiation codon was modified without amino acid substitution to reduce the free energy of formation for the folded mRNA. Expression plasmids containing these cDNA variants produced large amounts of T-protein in Escherichia coli, while very low expression was observed with a plasmid containing wild type cDNA. Enzymatically active T-protein was obtained when the expression was conducted at 30 degrees C with 25 microM isopropyl-1-thio-beta-D-galactopyranoside. Under the full inducing condition (at 37 degrees C and 1 mM inducer), the expressed T-protein was recovered as insoluble and inactive protein. The recombinant T-protein was purified to near homogeneity with a yield of about 30%. Apparent molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is approximately 40,000, similar to the size of T-protein purified from chicken liver. NH2-terminal amino acid sequence analysis (9 residues) revealed 100% identity with chicken T-protein determined chemically. The kinetic properties of the recombinant T-protein resembled those of the native chicken T-protein.  相似文献   

17.
The kinetic and regulatory properties of GTP cyclohydrolase I were investigated using an improved enzyme assay and direct determination of the product, dihydroneopterin triphosphate. The enzyme was purified from Escherichia coli to absolute homogeneity as demonstrated by N-terminal sequencing of up to 50 amino acid residues. A 30-residue internal fragment showed 42% similarity with rat liver GTP cyclohydrolase I. The enzyme did not obey Michaelis-Menten kinetics or show a sigmoid reaction curve. The substrate saturation kinetics were found to be slow with low response to minor changes in GTP concentrations. GTP cyclohydrolase I has a relatively high apparent Km. The values are slightly different for enzyme purified by GTP-agarose (100 microM) and UTP-agarose (110 microM). Low turnover numbers of 12/min and 19/min were calculated for the respective enzyme preparations. GTP-cyclohydrolase-I activity was modulated in Vmax by K+, divalent cations, UTP and tetrahydrobiopterin. Divalent cations, such as Mg2+, had an activating effect with an optimum at 8 mM Mg2+. A different catalytic function and formation of a new, unidentified product by GTP cyclohydrolase I was observed in the presence of Ca2+. In the presence of 1 mM EDTA and Mg2+, GTP-cyclohydrolase-I activity was strongly inhibited by chelate complexes. UTP proved not to be a competitive inhibitor, but a positive modulator. The inhibition by chelate complexes was totally abolished by UTP. Tetrahydrobiopterin showed an inhibitory effect, with 50% inhibition at 100 microM tetrahydrobiopterin. UTP was able to reduce the inhibition by tetrahydrobiopterin. Using monoclonal antibody 1F11 (related to the GTP-binding site), and monoclonal antibody NS7 (mimicking tetrahydrobiopterin), different binding sites were demonstrated for GTP and tetrahydrobiopterin on each enzyme subunit. Western-blot competition analysis revealed a UTP-binding site different from the binding sites of GTP and tetrahydrobiopterin. Based on the kinetic behaviour and the kind of modulations observed we defined GTP cyclohydrolase I as an M-class allosteric enzyme.  相似文献   

18.
We cloned a cDNA encoding a novel lysyl oxidase-related protein, named LOXC, by suppression subtractive hybridization between differentiated and calcified ATDC5 cells, a clonal mouse chondrogenic EC cell line. The deduced amino acid sequence of mouse LOXC consists of 757 amino acids and shows 50% identity with that of mouse lysyl oxidase. Northern blot analysis showed a distinct hybridization band of 5.4 kilobases, and Western blot analysis showed an immunoreactive band at 82 kilodaltons. Expression of LOXC mRNA was detected in osteoblastic MC3T3-E1 cells and embryonic fibroblast C3H10T1/2 cells, whereas none of NIH3T3 fibroblasts and myoblastic C2C12 cells expressed LOXC mRNA in vitro. Moreover, the LOXC mRNA and protein levels dramatically increased throughout a process of chondrogenic differentiation in ATDC5 cells. In vivo, LOXC gene expression was localized in hypertrophic and calcified chondrocytes of growth plates in adult mice. The conditioned media of COS-7 cells transfected with the full-length LOXC cDNA showed the lysyl oxidase activity in both type I and type II collagens derived from chick embryos, and these activities of LOXC were inhibited by beta-aminopropionitrile, a specific inhibitor of lysyl oxidase. Our data indicate that LOXC is expressed in cartilage in vivo and modulates the formation of a collagenous extracellular matrix.  相似文献   

19.
Two cDNA clones, 2C19 and 4C1, were isolated from a lung cDNA library of 3-methylcholanthrene (MC)-treated hamster by using rat P-450c cDNA as a probe. The cDNA determined from 2C19 and 4C1 was 2,916 bp long and contained an entire coding region for 524 amino acids with a molecular weight of 59,408. The deduced amino acid sequence showed a 85% identity with that of rat P-450c indicating 2C19 and 4C1 encode the hamster P-450IA1 protein. Another cDNA clone, designated H28, was isolated from a MC-induced hamster liver cDNA library by using the hamster lung 2C19 or 4C1 cDNA clone as a probe. H28 was 1,876 bp long and encoded a polypeptide of 513 amino acids with a molecular weight of 58,079. The N-terminal 20 residues deduced from nucleotide sequence of H28 were identical to those determined by sequence analysis of purified hamster hepatic P-450MCI. The high similarity of the nucleotide and deduced amino acid sequences between H28 and P-450IA2 of other species indicated that H28 encoded a P-450 protein which belongs to the P-450IA2 family. Northern blot analysis revealed that the mRNAs for hamster P-450IA1 and IA2 were about 2.9 and 1.9 kb long, respectively. Hamster P-450IA1 mRNA was induced to the same level in lungs as in livers by MC treatment, whereas hamster P-450IA2 mRNA was induced and expressed only in hamster liver.  相似文献   

20.
Saccharomyces cerevisiae is so far the only organism where a knock-out mutant in the gene encoding GTP cyclohydrolase I (FOL2) has been obtained. GTP cyclohydrolase I controls the de novo biosynthetic pathway of tetrahydrobiopterin and folic acid. Since deletion of yeast FOL2 leads to a recessive auxotrophy for folinic acid, we used a yeast fol2Delta mutant for an in vivo functional assay of heterologous GTP cyclohydrolases I. We show that the GTP cyclohydrolase I, encoded either by the E. coli folE gene or by the human cDNA, complements the yeast fol2Delta mutation by restoring folate prototrophy. Furthermore the folE-3x allele of the E. coli gene, carrying three base substitutions, failed to complement the yeast fol2Delta defect. This allele behaved as a negative semidominant to the wild type folE and, when overexpressed, completely abolished complementation of fol2Delta by folE. Thus, the yeast fol2 null mutant is a suitable system to characterize mutations in genes encoding GTP cyclohydrolase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号