首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The role of different isoforms of nitric oxide synthase (NOS) in the gastric mucosal hyperemia, induced by 155 mM luminal hydrochloric acid (pH approximately 0.8) without a barrier breaker, was investigated. Rats were anesthetized with Inactin (120 mg/kg ip), and mice were anesthetized with Forene (2.2% in 40% oxygen gas at 150 ml/min); the gastric mucosa was exteriorized. Gastric mucosal blood flow was measured with laser-Doppler flowmetry (LDF) in rats treated with Nomega-nitro-l-arginine (l-NNA; unspecific NOS inhibitor), l-N6-(1-iminoethyl)lysine [l-NIL; inducible (i) NOS inhibitor], or S-methyl-l-thiocitrulline [SMTC; neuronal (n) NOS inhibitor], 10 mg/kg, followed by 3 mg. kg-1. h-1 iv, in iNOS-deficient (-/-) and nNOS(-/-) mice. mRNA was isolated from the gastric mucosa in iNOS(-/-) and wild-type (wt) mice, and real-time RT-PCR was performed. The effect of 155 mM acid on gastric mucosal permeability was determined by measuring the clearance of 51Cr-EDTA from blood to lumen. LDF increased by 48 +/- 13% during 155 mM HCl luminally, an increase that was abolished by l-NNA, SMTC, or l-NIL. In iNOS wt mice, LDF increased by 33 +/- 8% during luminal acid. The blood flow increase was attenuated substantially in iNOS(-/-) mice. RT-PCR revealed iNOS mRNA expression in the gastric mucosa in the iNOS wt groups. The blood flow increase in response to acid was not abolished in nNOS(-/-) mice (nNOS-sufficient mice, 39 +/- 18%; heterozygous mice, 25 +/- 19%; -/- mice, 19 +/- 7%). Mucosal permeability was transiently increased during 155 mM HCl. The results suggest that iNOS is constitutively expressed in the gastric mucosa and is involved in acid-induced hyperemia, suggesting a novel role for iNOS in gastric mucosal protection.  相似文献   

2.
Ionic fluxes induced by topical misoprostol in canine gastric mucosa   总被引:1,自引:0,他引:1  
We studied the dose response of ionic fluxes in canine chambered gastric segment mucosa to increasing doses of topical misoprostol (0.1, 1, 10, 100, and 1000 micrograms). The fluxes were also correlated with the simultaneous changes in focal gastric mucosal blood flow measured by laser-Doppler flowmetry. After misoprostol administration, there was a dose-dependent increase in focal gastric mucosal blood flow (Emax = 8.23 +/- 3.25 V at 10 micrograms; ED50 = 1.05 micrograms), pH, and the outputs of ions (Na+, K+, Cl-, and HCO3-) and fluid (Emax for pH and fluxes greater than or equal to 1000 micrograms). ED50 values for these outputs ranged from 215.40 to 340 micrograms (mean +/- SE = 279.08 +/- 24.27 micrograms). H+ output showed a dose-dependent decrease to zero at the 10-micrograms dose, the dose at and after which net HCO3- secretion became obvious. The slopes of the dose-response curves for the fluxes of fluid, Na+, K+, Cl-, and HCO3- were significantly different (p less than 0.01) from the slope of the curve for mucosal blood flow changes. There were no correlations between the changes in these fluxes and blood flow changes. Na+ and Cl- were the predominant cation (98.84%) and anion (98.19%), respectively, in the misoprostol-induced secretion. Misoprostol stimulates a composite alkaline gastric nonparietal secretion, predominantly Na+ and Cl-, but also containing K+ and HCO3-. Our results suggest different mechanisms for the effects on nonparietal secretion and focal gastric mucosal blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The adequacy of intestinal perfusion during shock and resuscitation might be estimated from intestinal tissue acid-base balance. We examined this idea from the perspective of conventional blood acid-base physicochemistry. As the O(2) supply diminishes with failing blood flow, tissue acid-base changes are first "respiratory, " with CO(2) coming from combustion of fuel and stagnating in the decreasing blood flow. When the O(2) supply decreases to critical, the changes become "metabolic" due to lactic acid. In blood, the respiratory vs. metabolic distinction is conventionally made using the buffer base principle, in which buffer base is the sum of HCO(3)(-) and noncarbonate buffer anion (A(-)). During purely respiratory acidosis, buffer base stays constant because HCO(3)(-) cannot buffer its own progenitor, carbonic acid, so that the rise of HCO(3)(-) equals the fall of A(-). During anaerobic "metabolism," however, lactate's H(+) is buffered by both A(-) and HCO(3)(-), causing buffer base to decrease. We quantified the partitioning of lactate's H(+) between HCO(3)(-) and A(-) buffer in anoxic intestine by compressing intestinal segments of anesthetized swine into a steel pipe and measuring PCO(2) and lactate at 5- to 10-min intervals. Their rises followed first-order kinetics, yielding k = 0. 031 min(-1) and half time = approximately 22 min. PCO(2) vs. lactate relations were linear. Over 3 h, lactate increased by 31 +/- 3 mmol/l tissue fluid (mM) and PCO(2) by approximately 17 mM, meaning that one-half of lactate's H(+) was buffered by tissue HCO(3)(-) and one-half by A(-). The data were consistent with a lumped pK(a) value near 6.1 and total A(-) concentration of approximately 30 mmol/kg. We conclude that the respiratory vs. metabolic distinction could be made in tissue by estimating tissue buffer base from measured pH and PCO(2).  相似文献   

4.
Effects of endothelin-1 on gastric acid secretion, duodenal HCO3- secretion, and duodenal mucosal integrity were investigated in anesthetized rats, in comparison with those of TY-10957, a stable analogue of prostacyclin. A rat stomach mounted on an ex-vivo chamber or a proximal duodenal loop was perfused with saline, and gastric acid or duodenal HCO3- secretion was measured using a pH-stat method and by adding 100 mM NaOH or 10 mM HCl, respectively. Duodenal lesions were induced by mepirizole (200 mg/kg) given subcutaneously. Intravenous administration of endothelin-1 (0.6 and 1 nmol/kg) caused an increase of duodenal HCO3- secretion with concomitant elevation of blood pressure; this effect was antagonized by co-administrahon of BQ-123 (ET(A) antagonist; 3 mg/kg, i.v.) and significantly mitigated by vagotomy. Likewise, endothelin-1 caused a significant decrease in histamine-stimulated acid secretion, and this effect was also significantly antagonized by BQ-123. Although TY-10957 (10 and 30 mg/kg, i.v.) produced a temporal decrease of blood pressure, this agent caused not only an increase of duodenal HCO3- secretion, independent of vagal nerves, but also a decrease of acid secretion as well. In addition, both endothelin-1 and TY-10957 significantly prevented mepirizole-induced duodenal lesions at the doses that caused an increase of duodenal HCO3- secretion and a decrease of gastric acid secretion. These results suggest that endothelin-1 affects the duodenal mucosal integrity by modifying both gastric acid and duodenal HCO3- secretions, the effects being mediated by ET(A) receptors.  相似文献   

5.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) plays a crucial role in mediating duodenal bicarbonate (HCO(3)(-)) secretion (DBS). Although impaired DBS is observed in CF mutant mice and in CF patients, which would predict increased ulcer susceptibility, duodenal injury is rarely observed in CF patients and is reduced in CF mutant mice. To explain this apparent paradox, we hypothesized that CFTR dysfunction increases cellular [HCO(3)(-)] and buffering power. To further test this hypothesis, we examined the effect of a novel, potent, and highly selective CFTR inhibitor, CFTR(inh)-172, on DBS and duodenal ulceration in rats. DBS was measured in situ using a standard loop perfusion model with a pH stat under isoflurane anesthesia. Duodenal ulcers were induced in rats by cysteamine with or without CFTR(inh)-172 pretreatment 1 h before cysteamine. Superfusion of CFTR(inh)-172 (0.1-10 microM) over the duodenal mucosa had no effect on basal DBS but at 10 microM inhibited acid-induced DBS, suggesting that its effect was limited to CFTR activation. Acid-induced DBS was abolished at 1 and 3 h and was reduced 24 h after treatment with CFTR(inh)-172, although basal DBS was increased at 24 h. CFTR(inh)-172 treatment had no effect on gastric acid or HCO(3)(-) secretion. Duodenal ulcers were observed 24 h after cysteamine treatment but were reduced in CFTR(inh)-172-pretreated rats. CFTR(inh)-172 acutely produces CFTR dysfunction in rodents for up to 24 h. CFTR inhibition reduces acid-induced DBS but also prevents duodenal ulcer formation, supporting our hypothesis that intracellular HCO(3)(-) may be an important protective mechanism for duodenal epithelial cells.  相似文献   

6.
Nizatidine, a histamine H(2)-antagonist, is known to inhibit acetylcholinesterase (AChE) activity and is used clinically as a gastroprokinetic agent as well as the anti-ulcer agent. We examined whether or not nizatidine stimulates duodenal HCO(3)(-) secretion in rats through vagal-cholinergic mechanisms by inhibiting AChE activity. Under pentobarbital anesthesia, a proximal duodenal loop was perfused with saline, and the HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 10 mM HCl. Nizatidine, neostigmine, carbachol, famotidine or ranitidine was administered i.v. as a single injection. Intravenous administration of nizatidine (3-30 mg/kg) dose-dependently increased the HCO(3)(-) secretion, and the effect at 10 mg/kg was equivalent to that obtained by carbachol at 0.01 mg/kg. The HCO(3)(-) stimulatory action of nizatidine was observed at the doses that inhibited the histamine-induced acid secretion and enhanced gastric motility. This effect was mimicked by neostigmine (0.03 mg/kg) and significantly attenuated by bilateral vagotomy and pretreatment with atropine but not indomethacin. The IC(50) of nizatidine for AChE of rat erythrocytes was 1.4 x 10(-6) M, about 12 times higher than that of neostigmine. Ranitidine showed the anti-AchE activity and increased duodenal HCO(3)(-) secretion, similar to nizatidine, whereas famotidine had any influence on neither AChE activity nor the HCO(3)(-) secretion. On the other hand, duodenal damage induced by acid perfusion (100 mM HCl for 4 h) in the presence of indomethacin was significantly prevented by nizatidine and neostigmine, at the doses that increased the HCO(3)(-) secretion. These results suggest that nizatidine increases HCO(3)(-) secretion in the rat duodenum, mediated by vagal-cholinergic mechanism, the action being associated with the anti-AChE activity of this agent.  相似文献   

7.
We investigated the cyclooxygenase (COX) isoforms as well as prostaglandin E receptor EP subtypes responsible for acid-induced gastric HCO(3)(-) secretion in rats and EP receptor-knockout (-/-) mice. Under urethane anesthesia, a chambered stomach (in the presence of omeprazole) was perfused with saline, and HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved by exposing the stomach for 10 min to 50 or 100 mM HCl. Acidification of the mucosa increased the secretion of HCO(3)(-) in the stomach of both rats and WT mice, in an indomethacin-inhibitable manner. The acid-induced gastric HCO(3)(-) secretion was inhibited by prior administration of indomethacin and SC-560 but not rofecoxib in rats and mice. Acidification increased the PGE(2) content of the rat stomach, and this response was significantly attenuated by indomethacin and SC-560 but not rofecoxib. This response was also attenuated by ONO-8711 (EP1 antagonist) but not AE3-208 (EP4 antagonist) in rats and disappeared in EP1 (-/-) but not EP3 (-/-) mice. PGE(2) increased gastric HCO(3)(-) secretion in both rats and WT mice, and this action was inhibited by ONO-8711 and disappeared in EP1 (-/-) but not EP3 (-/-) mice. These results support a mediator role for endogenous PGs in the gastric response induced by mucosal acidification and clearly indicate that the enzyme responsible for production of PGs in this process is COX-1. They further show that the presence of EP1 receptors is essential for the increase in the secretion of HCO(3)(-) in response to mucosal acidification in the stomach.  相似文献   

8.
We investigated the involvement of carbonic anhydrase (CA) in mediating V-H(+)-ATPase translocation into the basolateral membrane in gills of alkalotic Squalus acanthias. Immunolabeling revealed that CA is localized in the same cells as V-H(+)-ATPase. Blood plasma from dogfish injected with acetazolamide [30 mg/kg at time (t) = 0 and 6 h] and infused with NaHCO(3) for 12 h (1,000 microeq.kg(-1).h(-1)) had significantly higher plasma HCO(3)(-) concentration than fish that were infused with NaHCO(3) alone (28.72 +/- 0.41 vs. 6.57 +/- 2.47 mmol/l, n = 3), whereas blood pH was similar in both treatments (8.03 +/- 0.11 vs. 8.04 +/- 0.11 pH units at t = 12 h). CA inhibition impaired V-H(+)-ATPase translocation into the basolateral membrane, as estimated from immunolabeled gill sections and Western blotting on gill cell membranes (0.24 +/- 0.08 vs. 1.00 +/- 0.28 arbitrary units, n = 3; P < 0.05). We investigated V-H(+)-ATPase translocation during a postfeeding alkalosis ("alkaline tide"). Gill samples were taken 24-26 h after dogfish were fed to satiety in a natural-like feeding regime. Immunolabeled gill sections revealed that V-H(+)-ATPase translocated to the basolateral membrane in the postfed fish. Confirming this result, V-H(+)-ATPase abundance was twofold higher in gill cell membranes of the postfed fish than in fasted fish (n = 4-5; P < 0.05). These results indicate that 1) intracellular H(+) or HCO(3)(-) produced by CA (and not blood pH or HCO(3)(-)) is likely the stimulus that triggers the V-H(+)-ATPase translocation into the basolateral membrane in alkalotic fish and 2) V-H(+)-ATPase translocation is important for enhanced HCO(3)(-) secretion during a naturally occurring postfeeding alkalosis.  相似文献   

9.
TRH analogue, RX 77368, injected intracisternally (i.c.) at high dose (3 microg/rat) produces gastric mucosal lesion formation through vagal-dependent pathway. The gastric mucosal hyperemia induced by i.c. RX 77368 was shown to be mediated by muscarinic vagal efferent fibres and mast cells. Furthermore, electrical vagal stimulation was observed to induce gastric mucosal mast cell degranulation. The aim of the study was to assess the influence of ketotifen, a mast cell stabilizer, on RX 77368-induced gastric lesion formation and gastric acid secretion. RX 77368 (3 microg, i.c.) or vehicle (10 microL, i.c.) was delivered 240 min prior to the sacrifice of the animals. Ketotifen or vehicle (0.9% NaCl, 0.5 mL) was injected intraperitoneally (i.p.) at a dose of 10 mg x kg(-1) 30 min before RX 77368 injection. The extent of mucosal damage was planimetrically measured by a video image analyzer (ASK Ltd., Budapest) device. In the gastric acid secretion studies, the rats were pretreated with ketotifen (10 mg x kg(-1), i.p.) or vehicle (0.9% NaCl, 0.5 mL, i.p.), 30 min later pylorus-ligation was performed and RX 77368 (3 microg, i.c.) or vehicle (0.9% NaCl, 10 microL, i.c.) was injected. The rats were killed 240 min after i.c. injection, and the gastric acid secretion was measured through the titration of gastric contents with 0.1 N NaOH to pH 7.0. RX 77368 (3 microg, i.c.) resulted in a gastric mucosal lesion formation involving 8.2% of the corpus mucosa (n = 7). Ketotifen elicited an 85% inhibition on the development of mucosal lesions (n = 7, P < 0.001) whereas ketotifen alone had no effect on the lesion formation in the mucosa (n = 7). The RX 77368 induced increase of gastric acid secretion was not influenced by ketotifen pretreatment in 4-h pylorus-ligated animals. Central vagal activation induced mucosal lesion formation is mediated by the activation of mucosal mast cells in the stomach. Mast cell inhibition by ketotifen does not influence gastric acid secretion induced by i.c. TRH analogue in 4-h pylorus-ligated rats.  相似文献   

10.
The proximal duodenum is exposed to extreme elevations of P(CO(2)) because of the continuous mixture of secreted HCO(3)(-) with gastric acid. These elevations (up to 80 kPa) are likely to place the mucosal cells under severe acid stress. Furthermore, we hypothesized that, unlike most other cells, the principal source of CO(2) for duodenal epithelial cells is from the lumen. We hence examined the effect of elevated luminal P(CO(2)) on duodenal HCO(3)(-) secretion (DBS) in the rat. DBS was measured by the pH-stat method. For CO(2) challenge, the duodenum was superfused with a high Pco(2) solution. Intracellular pH (pH(i)) of duodenal epithelial cells was measured by ratio microfluorometry. CO(2) challenge, but not isohydric solutions, strongly increased DBS to approximately two times basal for up to 1 h. Preperfusion of the membrane-permeant carbonic anhydrase inhibitor methazolamide, or continuous exposure with indomethacin, fully inhibited CO(2)-augmented DBS. Dimethyl amiloride (0.1 mM), an inhibitor of the basolateral sodium-hydrogen exchanger 1, also inhibited CO(2)-augumented DBS, although S-3226, a specific inhibitor of apical sodium-hydrogen exchanger 3, did not. DIDS, an inhibitor of basolateral sodium-HCO(3)(-) cotransporter, also inhibited CO(2)-augemented DBS, as did the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid. CO(2) decreased epithelial cell pH(i), followed by an overshoot after removal of the CO(2) solution. We conclude that luminal CO(2) diffused in the duodenal epithelial cells and was converted to H(+) and HCO(3)(-) by carbonic anhydrase. H(+) initially exited the cell, followed by secretion of HCO(3)(-). Secretion was dependent on a functioning basolateral sodium/proton exchanger, a functioning basolateral HCO(3)(-) uptake mechanism, and submucosal prostaglandin generation and facilitated hydration of CO(2) into HCO(3)(-) and H(+).  相似文献   

11.
Female rats were subjected to operations aimed at reducing the amount of oxyntic gland mucosa draining its acid secretion to the antrum. The rats were provided either with Heidenhain or Pavlov pouches reducing the oxyntic mucosa draining its secretion to the antrum by about 50% or subjected to various degrees (75, 90 and 100%) of fundectomy. Ten weeks following surgery, plasma levels of gastrin and somatostatin were assayed. At the same time, antral mucosal content of gastrin and somatostatin was determined as well as the mucosal density of these hormone-producing cells. There was a relationship between the amount of acid-secreting mucosa removed and the ensuring plasma concentration of gastrin. Thus, a stepwise increase in plasma gastrin was found with the highest levels obtained in rats subjected to 90 or 100% fundectomy. The somatostatin concentration in plasma was reduced only in rats subjected to fundectomy with the most sustained decrease in animals in which all oxyntic gland mucosa had been removed. There was also a relationship between the amount of acid-secreting mucosa removed and the gastrin content of the antral mucosa. An inverse relationship seemed to exist between antral gastrin and somatostatin concentrations. However, a significant decrease in somatostatin concentration of the antral mucosa was seen only in rats subjected to a fundectomy. The number of gastrin cells in the antral mucosa was increased in fundectomized rats only, with the largest density seen in rats deprived of all oxyntic mucosa. A corresponding decrease in the number of somatostatin cells was noticed. Our results would suggest an apparent functional relationship between antral gastrin and somatostatin cells, where the antral acid load (or pH) appears to be the major factor of physiological significance.  相似文献   

12.
Intestinal fluids of most marine teleosts are alkaline (pH 8.4-9.0) and contain high levels of HCO(3)(-) equivalents (40-130 mM) which are excreted at a significant rate (>100 microEq kg(-1) h(-1)). Recent research reveals the following about this substantial HCO(3)(-) secretion: (1) It is not involved in acid-base regulation or neutralisation of stomach acid, but increases in parallel with drinking rate at elevated ambient salinities suggesting a role in osmoregulation; (2) In species examined so far, all sections of the intestine can secrete bicarbonate; (3) The secretion is dependent on mucosal Cl(-), sensitive to mucosal DIDS, and immuno-histochemistry indicates involvement of an apical Cl(-)/HCO(3)(-) exchanger. In addition, hydration of CO(2) via carbonic anhydrase in combination with proton extrusion appears to be essential for bicarbonate secretion. The mode of proton extrusion is currently unknown but potential mechanisms are discussed. One consequence of the luminal alkalinity and high bicarbonate concentrations is precipitation of calcium and magnesium as carbonate complexes. This precipitation is hypothesised to reduce the osmolality of intestinal fluids and thus play a potential role in water absorption and osmoregulation. The present studies on European flounder reveal that elevated luminal calcium (but not magnesium) concentrations stimulate intestinal bicarbonate secretion both acutely and chronically, in vitro and in vivo. At the whole animal level, the result of this elevated bicarbonate secretion was increased calcium precipitation with an associated reduction in the osmolality of rectal fluids and plasma. These observations suggest direct functional links between intestinal bicarbonate secretion, divalent cation precipitation and osmoregulation in marine teleost fish.  相似文献   

13.
We compared gastric acid secretion in response to various stimuli in normal and streptozotocin (STZ)-induced diabetic rats, in an attempt to characterize the alteration of acid secretory response in diabetic conditions. Animals were injected STZ (70 mg x kg(-1), i.p.) and used after 5 weeks of diabetes with blood glucose > 350 mg x dL(-1). Under urethane anesthesia, a rat stomach was mounted on an ex vivo chamber, perfused with saline and acid secretion was measured at pH 7.0 using a pH-stat method and by adding 100 mM NaOH. The acid secretion was stimulated by i.v. infusion of either histamine (4 mg x kg(-1) x h(-1)), pentagastrin (60 microg x kg(-1) x h(-1)) or carbachol (20 microg x kg(-1) x h(-1)) or i.v. injection of YM-14673 (0.3 mg x kg(-1)), an analog of thyrotropin-releasing hormone, or vagal electrical stimulation (2 ms, 3 Hz, 0.5 mA). In normal rats, gastric acid secretion was increased in response to either histamine, pentagastrin, carbachol, YM-14673 or electrical vagal stimulation. In STZ diabetic rats, however, changes in acid secretion varied depending on the stimuli; the acid secretory responses to histamine remained unchanged, those to YM-14673 and vagal electrical stimulation significantly decreased, but the responses to both pentagastrin and carbachol were significantly enhanced as compared to normal rats. Luminal release of histamine in response to both pentagastrin and carbachol was increased in STZ-diabetic rats as compared to normal animals. The altered acid secretory responses in STZ diabetic rats were partially reversed by daily injection of insulin with amelioration of high blood glucose levels. These results suggest that STZ-diabetic rats showed different changes in gastric acid secretory responses to various stimuli; no change in response to histamine, a decrease to both YM-14673 and vagal electrical stimulation and an increase to both pentagastrin and carbachol. The increased acid secretory response may be associated with an enhanced release of mucosal histamine, while the decreased response may be due to vagal neuropathy.  相似文献   

14.
Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca(2+), which regulates ion transport, including HCO(3)(-) secretion. However, the underlying Ca(2+) handling mechanisms are poorly understood. The aim of the present study was to determine whether Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO(3)(-) secretion by controlling Ca(2+) homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current (I(sc)), and HCO(3)(-) secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca(2+) in duodenocytes was measured by fura 2. Carbachol (100 muM) increased I(sc) in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO(3)(-) secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 muM) or LiCl (30 mM) significantly reduced the initial peak in I(sc) by 51 or 47%, respectively, and abolished the plateau phase of I(sc) without affecting HCO(3)(-) secretion induced by carbachol. Ryanodine (100 muM), caffeine (10 mM), and nifedipine (10 muM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10-30 muM) significantly inhibited carbachol-induced increases in duodenal mucosal I(sc) and HCO(3)(-) secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca(2+) imaging experiments where Na(+) depletion elicited Ca(2+) entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion that results from stimulation of muscarinic receptors.  相似文献   

15.
The effect of intravenous administration of L-glutamic acid (L-Glu) on gastric acid secretion and gastric mucosal blood flow (GMBF) in anesthetized rats were investigated. Infusion with synthetic L-Glu alone had no effect on spontaneous acid secretion. However, L-Glu reduced histamine- (2 mg/kg/hr) or oxotremorine- (1 microg/kg/hr) stimulated acid secretion, whereas L-Glu had no effect on acid secretion induced by pentagastrin (8 microg/kg/hr). Furthermore, this inhibitory effect of L-Glu on histamine- or oxotremorine-stimulated acid secretion was blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX), a non-NMDA receptor antagonist. The effect of L-Glu on gastric mucosal microcirculation in the anesthetized rats was evaluated by using Laser Doppler Flowmetry (LDF). The results showed that L-Glu did not significantly reduce both mucosal and serosal blood flow in stomach. No significant modulatory effect on histamine- or oxotremorine-stimulated increase in GMBF was noted after infusion with L-Glu. It is concluded that L-glutamic acid is capable of the modulating of gastric acid secretion via ionotropic non-NMDA receptors, but do not affect on GMBF. However, L-glutamic acid showed no effect on acid secretion by itself.  相似文献   

16.
Prostaglandins (PG) derived from COX-1 play an important role in the maintenance of mucosal integrity but the role of COX-2-derived products in mucosal defence mechanism has not been fully explained. Mild stress is known to prevent gastric mucosal lesions induced by severe stress via the phenomenon of adaptive cytoprotection but it remains unknown which COX is involved in this adaptation. In this study, the mucosal expression of COX-1 and COX-2 was examined and the inhibitors of these enzymes were used to determine the contribution of these enzymes in adaptive cytoprotection induced by mild stress. Male Wistar rats were exposed to mild water immersion and restraint stress (WRS) at various time intervals ranging from 5 min up to 2 h followed 1 h later by exposure to severe 3.5 h WRS with or without pretreatment with: 1) NS-398 (10 mg x kg(-1) i.g.), a selective COX-2 inhibitor; 2) resveratrol (5 mg x kg(-1) i.g.), a selective COX-1 inhibitor; 3) meloxicam (2 mg x kg(-1) i.g.), preferential COX-2 inhibitor; and 4) indomethacin (5 mg x kg(-1) i.p), non-selective inhibitor of COX. The number of WRS lesions was counted, gastric blood flow (GBF) was measured by H2-gas clearance technique, mucosal biopsy samples were taken for the assessment of PGE2 by radioimmunoassay, and the expression of COX-1 and COX-2 mRNA by RT-PCR. WRS for 3.5 h produced numerous gastric lesions, decreased GBF by 48% and inhibited formation of PGE2 by 68% as compared to intact mucosa. Exposure to mild WRS during 5-30 min by itself failed to affect mucosal integrity but significantly attenuated gastric lesions induced by exposure to severe 3.5 h stress; the maximal protective effect being achieved with mild WRS during 15 min. This protective effect was accompanied by the rise in GBF and the generation of PGE2 in the gastric mucosa. After extension of mild WRS from 15 min up to 1 or 2 h before more severe 3.5 h WRS, the loss of cytoprotective effect of mild WRS against severe stress accompanied by significant fall in the GBF were observed. Pretreatment with NS-398 (10 mg x kg(-1) i.g.) that failed to affect mucosal PGE2 generation, reduced significantly the protection and accompanying rise in GBF produced by mild WRS whereas resveratrol partly reduced the protection and the rise in GBF induced by mild WRS. Meloxicam or indomethacin significantly inhibited PGE2 generation and completely abolished the hyperemia and protection induced by mild WRS against more severe stress. The protective and hyperemic effects of mild WRS were completely restored by the addition of 16,16 dm PGE2 (5 microg x kg(-1) i.g.) to NS-398 or resveratrol, while the deleterious effects of meloxicam and indomethacin were significantly attenuated by the concomitant treatment with this PGE2 analogue. We conclude that PG derived from both, COX-1 and COX-2 appear to be involved in adaptive cytoprotection developed in response to mild stressors.  相似文献   

17.
The non-steroidal antiinflammatory drugs, such as an indomethacin (IND), cause mucosal ulceration and increase the mucosal vascular permeability in the gastrointestinal (GI) tract. Some exogenous agents, e.g. the atropine, can protect the GI mucosa against these ulcerogenic effects. The gastrointestinal functions and mucosal protection, however, are regulated by the vagal nerve. The aims of this study was to examine the dependence of atropine-induced GI cytoprotection to the vagal innervation against the development of IND-caused ulcers and microvascular damage in the mucosa of stomach and small intestine in rats. METHODS: the observations were carried out on CFY-strain rats. The mucosal damage was produced by subcutaneous administration of IND in a 20 mg/kg dose 24 h prior to the killing of animals at the same time as the start of atropine-application, which was given in a small dose (0.1 mg/kg) every 5 h. The subdiaphragmatic bilateral surgical vagotomy was done 24 h before the experiment. The vascular permeability, indicated by the microvascular endothel damage, was measured by the appearance and concentration of intravenously administered Evans blue into the GI mucosa. The number and severity of mucosal lesions and the Evans blue content of mucosa were determined in the stomach and small intestine. RESULTS: (1) The IND caused mucosal ulcers and Evans blue extravasation into the mucosa of the stomach and small intestine. (2) The IND-induced mucosal ulceration and vascular permeability significantly decreased after atropine-administration in the same parts of GI tract. (3) The extent of cytoprotective effect of atropine against the IND was decreased after bilateral surgical vagotomy. CONCLUSIONS: (1) The IND causes microvascular endothel damage in the stomach and small intestinal. (2) The atropine has a cytoprotective effect in the stomach and small intestine against the aggressive effects of IND without decrease of gastric acid secretion. (3) The intact vagal nerve is necessary to the function of cytoprotective mechanisms of atropine against the IND.  相似文献   

18.
Circulating peptide leptin which is the product of the ob gene is known to provide feedback information on the size of fat stores to central OB-receptors that control food intake. Recently, leptin messenger RNA and leptin protein have been detected in gastric epithelium and leptin was found to be released by CCK into circulation but the physiological role of this gastric leptin remains unknown. As CCK has been reported to protect gastric mucosa against various noxious agents, we designed the study to determine the influence of leptin and CCK on the gastroprotection and the control of food intake and to compare them with classic gastroprotective substance, prostaglandin E2, in rats with acute gastric mucosal lesions induced by topical application of 75% ethanol. Four series of Wistar rats (A, B, C and D) were used to determine; A) the effects of various doses of leptin (0.1-10 microg/kg) given intraperitoneally (i.p.) on ethanol-induced gastric lesions, gastric blood flow (GBF) and plasma levels of immunoreactive leptin; B) the effects of various doses of CCK-8 (0.1-10 microg/kg i.p.) on ethanol-induced gastric lesions, GBF and plasma levels of leptin; C) the effects of various doses of PGE2 (12.5--100 microg/kg) given intragastrically (i.g.) on ethanol-induced gastric lesions and GBF and D) the influence of leptin, CCK and PGE2 on the intake of liquid meal in rats. Rats were anesthetized with ether 1 h after i.g. administration of 75% ethanol to measure the GBF using H2-gas clearance technique and blood samples were withdrawn for the measurement of plasma leptin levels by radioimmunoassay (RIA). Food intake was assessed in separate group of rats fasted 18 h and then fed with liquid caloric meal. Leptin, CCK and PGE2 reduced dose-dependently gastric lesions induced by 75% ethanol, the dose reducing these lesions by 50% (ED50) being, respectively, 1 microg/kg, 5 microg/kg and 20 microg/kg. The protective effects of leptin, CCK-8 and PGE2 were accompanied by significant attenuation of the fall of the GBF caused by ethanol. Leptin and CCK reduced also dose-dependently the food intake while PGE2 was not effective. Leptin and CCK resulted a dose-dependent increment in the plasma leptin levels. We conclude that: 1) exogenous leptin and CCK, causing similar increments in plasma immunoreactive leptin levels, protect dose-dependently gastric mucosa against the damage provoked by 75% ethanol; 2) Leptin and CCK afford similar gastroprotective activity to that attained with PGE2 but unlike PGE2 were highly effective in the reduction in food intake and 3) the protective effects of leptin, CCK and PGE2 were accompanied by significant increase of GBF suggesting that the protection afforded by these substances are mediated, at least in part, by gastric hyperemia.  相似文献   

19.
The repair of damaged gastric mucosa is a complex process involving prostaglandins (PG) and mucosal growth factors such as epidermal growth factor (EGF). Recently, we postulated that the increased occurrence of apoptosis in the gastric epithelium might be of pathophysiological importance in the development of stress lesions. The aim of the present study was to assess the effect of the pretreatment of rats, exposed to 3.5 h of water immersion and restraint stress (WRS), with EGF and PG (16,16 dmPGE(2)) on the number of stress lesions, recovery of gastric mucosa from stress and the expression of apoptosis related genes such as caspase-3 and antiapoptotic bcl-2. Rats were divided in following groups: (1) vehicle; (2) EGF 100 microg/kg i.p.; (3) 16,16 dm-PGE(2) (5 microg/kg i.g.) and caspase-1 inhibitor (ICE-I; 100 microg/kg i.p.). One hour later, the rats were exposed to 3.5 h of WRS and then sacrificed immediately (0 h) or at 6, 12, or 24 h after WRS. The number of acute gastric lesions was determined. Gastric epithelial apoptosis was assessed by TUNEL staining. In addition, mRNA expression of caspase-3, Bcl-2 and proinflammatory cytokines (IL-1 beta, TNFalpha) was assessed by RT-PCR. PGE(2) generation in gastric mucosa and luminal EGF were determined by RIA. Exposure to WRS resulted in the development of multiple acute stress erosions ( approximately 18) which almost completely healed during 24 h. The gastric blood flow was significantly reduced (approximately 70% of intact mucosa) immediately after WRS. The expression of mRNA for IL-1 beta and TNF alpha reached their peak at 12 h after stress exposure. The apoptosis rate was highest at 6 h after WRS and was accompanied by the highest caspase-3 expression. In rats pretreated with EGF or 16,16 dm-PGE(2), a significant decrease in caspase-3 mRNA and upregulation of bcl-2 mRNA as observed as compared to vehicle controls. Caspase-1 inhibitor significantly reduced the number of stress lesions. We conclude that EGF and PGE(2) accelerate healing of stress-induced lesions due to the attenuation of apoptosis via upregulation of bcl-2 in gastric mucosa. Inhibitors of apoptosis accelerate healing of stress lesions and may be potentially effective agents in the healing of damaged gastric mucosa.  相似文献   

20.
The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号