首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
2.
Bacaj T  Lu Y  Shaham S 《Genetics》2008,178(2):989-1002
Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentrate lipophilic dyes from their surroundings in sensory neurons and are chemotaxis defective. In che-12 mutants, sensory neuron cilia lack distal segments, while in dyf-11 animals, medial and distal segments are absent. CHE-12 and DYF-11 are conserved ciliary proteins that function cell-autonomously and are continuously required for maintenance of cilium morphology and function. CHE-12, composed primarily of HEAT repeats, may not be part of the intraflagellar transport (IFT) complex and is not required for the localization of some IFT components. DYF-11 undergoes IFT-like movement and may function at an early stage of IFT-B particle assembly. Intriguingly, while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is restricted to some amphid sensory neurons, suggesting a specific role in these neurons. Our results provide insight into general and neuron-specific aspects of cilium development and function.  相似文献   

3.
Bell LR  Stone S  Yochem J  Shaw JE  Herman RK 《Genetics》2006,173(3):1275-1286
The Caenorhabditis elegans genes dyf-6, daf-10, and osm-1 are among the set of genes that affect chemotaxis and the ability of certain sensory neurons to take up fluorescent dyes from the environment. Some genes in this category are known to be required for intraflagellar transport (IFT), which is the bidirectional movement of raft-like particles along the axonemes of cilia and flagella. The cloning of dyf-6, daf-10, and osm-1 are described here. The daf-10 and osm-1 gene products resemble each other and contain WD and WAA repeats. DYF-6, the product of a complex locus, lacks known motifs, but orthologs are present in flies and mammals. Phenotypic analysis of dyf-6 mutants expressing an OSM-6::GFP reporter indicates that the cilia of the amphid and phasmid dendritic endings are foreshortened. Consistent with genetic mosaic analysis, which indicates that dyf-6 functions in neurons of the amphid sensilla, DYF-6::GFP is expressed in amphid and phasmid neurons. Movement of DYF-6::GFP within the ciliated endings of the neurons indicates that DYF-6 is involved in IFT. In addition, IFT can be observed in dauer larvae.  相似文献   

4.
To elucidate the mechanism of sensory cilium formation, we analyzed mutants in the Caenorhabditis elegans che-2 gene. These mutants have extremely short cilia with an abnormal posterior projection, and show defects in behaviors that are mediated by ciliated sensory neurons. The che-2 gene encodes a new member of the WD40 protein family, suggesting that it acts in protein-protein interaction. Analysis of mutation sites showed that both the amino-terminal WD40 repeats and the carboxyl-terminal non-WD40 domain are necessary for the CHE-2 function. CHE-2-tagged green fluorescent protein is localized at the cilia of almost all the ciliated sensory neurons. Expression of che-2 in a subset of sensory neurons of a che-2 mutant by using a heterologous promoter resulted in restoration of the functions and cilium morphology of only the che-2-expressing neurons. Thus, che-2 acts cell-autonomously. This technique can be used in the future for determining the function of each type of che-2-expressing sensory neuron. Using green fluorescent protein, we found that the extension of cilia in wild-type animals took place at the late embryonic stage, whereas the cilia of che-2 mutant animals remained always short during development. Hence, the abnormal posterior projection is due to the inability of cilia to extend, rather than degeneration of cilia once correctly formed. Expression of che-2 in a che-2 mutant under a heat shock promoter showed that the extension of cilia, surprisingly, can occur even at the adult stage, and that such cilia can function apparently normally in behavior.  相似文献   

5.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.  相似文献   

6.
The intraflagellar transport (IFT) machinery required to build functional cilia consists of a multisubunit complex whose molecular composition, organization, and function are poorly understood. Here, we describe a novel tryptophan-aspartic acid (WD) repeat (WDR) containing IFT protein from Caenorhabditis elegans, DYF-2, that plays a critical role in maintaining the structural and functional integrity of the IFT machinery. We determined the identity of the dyf-2 gene by transgenic rescue of mutant phenotypes and by sequencing of mutant alleles. Loss of DYF-2 function selectively affects the assembly and motility of different IFT components and leads to defects in cilia structure and chemosensation in the nematode. Based on these observations, and the analysis of DYF-2 movement in a Bardet-Biedl syndrome mutant with partially disrupted IFT particles, we conclude that DYF-2 can associate with IFT particle complex B. At the same time, mutations in dyf-2 can interfere with the function of complex A components, suggesting an important role of this protein in the assembly of the IFT particle as a whole. Importantly, the mouse orthologue of DYF-2, WDR19, also localizes to cilia, pointing to an important evolutionarily conserved role for this WDR protein in cilia development and function.  相似文献   

7.
Coordination of neurite extension with surrounding glia development is critical for neuronal function, but the underlying molecular mechanisms remain poorly understood. Through a genome-wide mutagenesis screen in C. elegans, we identified dyf-4 and daf-6 as two mutants sharing similar defects in dendrite extension. DAF-6 encodes a glia-specific patched-related membrane protein that plays vital roles in glial morphogenesis. We cloned dyf-4 and found that DYF-4 encodes a glia-secreted protein. Further investigations revealed that DYF-4 interacts with DAF-6 and functions in a same pathway as DAF-6 to regulate sensory compartment formation. Furthermore, we demonstrated that reported glial suppressors of daf-6 could also restore dendrite elongation and ciliogenesis in both dyf-4 and daf-6 mutants. Collectively, our data reveal that DYF-4 is a regulator for DAF-6 which promotes the proper formation of the glial channel and indirectly affects neurite extension and ciliogenesis.  相似文献   

8.
9.
DYF-13, originally identified in Caenorhabditis elegans within a collection of dye-filling chemosensory mutants, is one of several proteins that have been classified as putatively involved in intraflagellar transport (IFT), the bidirectional movement of protein complexes along cilia and flagella and specifically in anterograde IFT. Although genetic studies have highlighted a fundamental role of DYF-13 in nematode sensory cilium and trypanosome flagellum biogenesis, biochemical studies on DYF-13 have lagged behind. Here, we show that in Trypanosoma brucei the orthologue to DYF-13, PIFTC3, participates in a macromolecular complex of approximately 660 kDa. Mass spectroscopy of affinity-purified PIFTC3 revealed several components of IFT complex B as well as orthologues of putative IFT factors DYF-1, DYF-3, DYF-11/Elipsa and IFTA-2. DYF-11 was further analysed and shown to be concentrated near the basal bodies and in the flagellum, and to be required for flagellum elongation. In addition, by coimmunoprecipitation we detected an interaction between DYF-13 and IFT122, a component of IFT complex A, which is required for retrograde transport. Thus, our biochemical analysis supports the model, proposed by genetic analysis in C. elegans, that the trypanosome orthologue of DYF-13 plays a central role in the IFT mechanism.  相似文献   

10.
11.
Caenorhabditis elegans PEB-1 is a novel DNA-binding protein expressed in most pharyngeal cell types and outside the pharynx in the hypodermis, hindgut, and vulva. Previous RNAi analyses indicated that PEB-1 is required for normal morphology of these tissues and growth; however, the peb-1 null phenotype was unknown. Here we describe the deletion mutant peb-1(cu9) that not only exhibits the morphological defects observed in peb-1(RNAi) animals, but also results in penetrant larval lethality characterized by defects in pharyngeal function and molting. Consistent with a function in molting, we found that PEB-1 was detectable in all hypodermal and hindgut cells underlying the cuticle. Comparison to molting-defective lrp-1(ku156) mutants revealed that the peb-1(cu9) mutants were particularly defective in shedding the pharyngeal cuticle, and this defect likely contributed to feeding defects and lethality. Most markers of pharyngeal cell differentiation examined were expressed normally in peb-1(cu9) mutants; however, g1 gland cell expression of a kel-1Colon, two colonsgfp reporter was reduced. As g1 gland cells have prominent functions during molting, we suggest defective gland cell differentiation contributes to peb-1(cu9) molting defects. In comparison, other peb-1 mutant phenotypes, including hindgut abnormalities, appeared independent of the molting defect. Similar phenotypes resulted from late loss of pha-4 function, suggesting that PEB-1 and PHA-4 have common functions in some tissues where they are co-expressed.  相似文献   

12.
13.
Cyclic nucleotide-gated (CNG) channels encoded by tax-4 and tax-2 genes are required for chemo- and thermo-sensation in Caenorhabditis elegans. Here we report the identification and the characterization of cng-3, a new CNG channel gene, found in C. elegans. CNG-3 contains six putative transmembrane regions and a cyclic nucleotide-binding domain that show high homology with CNG channels of higher animals as well as TAX-4. The expression of cng-3 is detected from early stages in worm development and restricted in five sensory neurons of amphid including AFD neuron. While a cng-3 null mutant displays normal chemotaxis to volatile odorants, the mutant worms exhibit impaired thermal tolerance. These results indicate that CNG-3, a new member of CNG channel subunits, may play a critical role in sensation or response of thermal stress in C. elegans.  相似文献   

14.
We developed a live-cell high-throughput assay system using the baker's yeast Saccharomyces cerevisiae to screen for chemical compounds that will inhibit fatty acid uptake. The target for the inhibitors is a mammalian fatty acid transport protein (mmFATP2), which is involved in the fatty acid transport and activation pathway. The mmFATP2 was expressed in a S. cerevisiae mutant strain deficient in Fat1p-dependent fatty acid uptake and reduced in long-chain fatty acid activation, fat1Deltafaa1Delta. To detect fatty acid import, a fluorescent fatty acid analog, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C1-BODIPY-C12), was incubated with cells expressing FATP2 in a 96-well plate. The mmFATP2-dependent C1-BODIPY-C12 uptake was monitored by measuring intracellular C1-BODIPY-C12 fluorescence on a microtiter plate reader, whereas extracellular fluorescence was quenched by a cell viability dye, trypan blue. Using this high-throughput screening method, we demonstrate that the uptake of the fluorescent fatty acid ligand was effectively competed by the natural fatty acid oleate. Inhibition of uptake was also demonstrated to occur when cells were pretreated with sodium azide or Triacsin C. This yeast live-cell-based assay is rapid to execute, inexpensive to implement, and has adequate sensitivity for high-throughput screening. The assay basis and limitations are discussed.  相似文献   

15.
TRPP2 (transient receptor potential polycystin-2) channels function in a range of cells where they are localized to specific subcellular regions including the endoplasmic reticulum (ER) and primary cilium. In humans, TRPP2/PC-2 mutations severely compromise kidney function and cause autosomal dominant polycystic kidney disease (ADPKD). The Caenorhabditis elegans TRPP2 homolog, PKD-2, is restricted to the somatodendritic (cell body and dendrite) and ciliary compartments of male specific sensory neurons. Within these neurons PKD-2 function is required for sensation. To understand the mechanisms regulating TRPP2 subcellular distribution and activity, we performed in vivo structure-function-localization studies using C. elegans as a model system. Our data demonstrate that somatodendritic and ciliary targeting requires the transmembrane (TM) region of PKD-2 and that the PKD-2 cytosolic termini regulate subcellular distribution and function. Within neuronal cell bodies, PKD-2 colocalizes with the OSM-9 TRP vanilloid (TRPV) channel, suggesting that these TRPP and TRPV channels may function in a common process. When human TRPP2/PC-2 is heterologously expressed in transgenic C. elegans animals, PC-2 does not visibly localize to cilia but does partially rescue pkd-2 null mutant defects, suggesting that human PC-2 and PKD-2 are functional homologs.  相似文献   

16.
17.
18.
Cilia are important sensory organelles, which are thought to be essential regulators of numerous signaling pathways. In Caenorhabditis elegans, defects in sensory cilium formation result in a small-body phenotype, suggesting the role of sensory cilia in body size determination. Previous analyses suggest that lack of normal cilia causes the small-body phenotype through the activation of a signaling pathway which consists of the EGL-4 cGMP-dependent protein kinase and the GCY-12 receptor-type guanylyl cyclase. By genetic suppressor screening of the small-body phenotype of a cilium defective mutant, we identified a chb-3 gene. Genetic analyses placed chb-3 in the same pathway as egl-4 and gcy-12 and upstream of egl-4. chb-3 encodes a novel protein, with a zf-MYND motif and ankyrin repeats, that is highly conserved from worm to human. In chb-3 mutants, GCY-12 guanylyl cyclase visualized by tagged GFP (GCY-12::GFP) fails to localize to sensory cilia properly and accumulates in cell bodies. Our analyses suggest that decreased GCY-12 levels in the cilia of chb-3 mutants may cause the suppression of the small-body phenotype of a cilium defective mutant. By observing the transport of GCY-12::GFP particles along the dendrites to the cilia in sensory neurons, we found that the velocities and the frequencies of the particle movement are decreased in chb-3 mutant animals. How membrane proteins are trafficked to cilia has been the focus of extensive studies in vertebrates and invertebrates, although only a few of the relevant proteins have been identified. Our study defines a new regulator, CHB-3, in the trafficking process and also shows the importance of ciliary targeting of the signaling molecule, GCY-12, in sensory-dependent body size regulation in C. elegans. Given that CHB-3 is highly conserved in mammal, a similar system may be used in the trafficking of signaling proteins to the cilia of other species.  相似文献   

19.
Maintenance of bilateral symmetry throughout animal development requires that both left and right halves of the body follow nearly identical patterns of cell proliferation, differentiation, death and migration. During formation of the perfectly bilateral Drosophila larval peripheral nervous system (PNS), the sensory precursor cells of the ventral multidendritic neuron vmd1a originating from each hemisegment migrate away from the ventral midline. Our observations indicate that in slit mutant embryos, as well as in robo, robo2 double mutants, sensory precursor cells of the left and right vmd1a neurons aberrantly cluster at the midline and then the pair of vmd1a neurons migrate to their final position on the same side of the embryo. This results in disruption of PNS bilateral symmetry. Expression of slit at the midline rescues the slit mutant vmd1a phenotype, suggesting that midline-secreted Slit activates Robo/Robo2 signalling to control the migration of the vmd1a sensory precursor cells. Our study indicates that midline-secreted Slit prevents vmd1a sensory cells from crossing the midline and thereby maintains PNS bilateral symmetry during development.  相似文献   

20.
Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号