首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro regeneration of plantlets and multiplication of Sesbania bispinosa (Jacq.) W.F. Wight plants from cultured callus tissue were demonstrated. Callus was established from both cotyledons and mature leaflets on Murashige and Skoog (MS) basal medium supplemented with BAP (0.5 mg/l) and 2,4-D (2 mg/l). Callus mediated shoot bud differentiation was studied under defined nutritional, hormonal and cultural conditions. Various concentrations of BAP or kinetin (Kn) with coconut milk (CM) in MS media induced different levels of shoot bud differentiation as well as multiplication. Multiple shoot bud differentiation occurred in most of the primary calli. The best medium for shoot bud differentiation from cotyledon derived callus, contained BAP (2 mg/l) and 15% CM (V/V). More efficient shoot bud organogenesis was recorded with BAP than Kn. Supplementation with CM in MS media accelerated shoot bud organogenesis in differentiating callus tissue. Rooting of differentiated shoots was achieved by a three step culture procedure involving (a) MS solid medium containing IBA (2 mg/l), (b) growth regulator free half strength MS medium with 1% charcoal, and (c) half strength MS liquid medium free of vitamins, growth regulators and charcoal.Abbreviations IAA indoleacetic acid - IBA indole-3-butyric acid - NAA naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - Kn kinetin - CM coconut milk - MS Murashige and Skoog's medium - SBI shoot bud inducing medium  相似文献   

2.
Plant regeneration via organogenesis and embryogenesis was obtained from callus cultures of Chamaecytisus purpureus and Chamaecytisus austriacus. While 2,4-D (4 or 0.5 mg/l) proved highly efficient for callus induction, a combination of 0.1 mg/l IBA and 10 mg/1 BAP induced a high frequency of shoots from the calli. It is shown that, beside the growth factors, the composition of the basal medium represents a critical factor for regeneration. With increasing culture age, a strong reduction of the differentiation capacity was observed.  相似文献   

3.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

4.
Ficus religiosa is known as a long-lived multipurpose forest tree. The tree plays an important role for religious, medicinal, and ornamental purposes. However, the propagation rate of Ficus religiosa is low in natural habitat so the plant tissue culture techniques are an applicable method for multiplication of this valuable medicinal plants. Thus, the aim of this study is to understand the effect of different auxin/cytokinin ratios on indirect shoot organogenesis of this plant. According to our results, the maximum callus induction frequency (100%) was obtained on Murashige and Skoog (MS) medium supplemented with 0.5?mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) plus 0.05?mg/l 6-benzylaminopurine (BAP) from petiole segments. For shoot induction purpose, the yellow-brownish, friable, organogenic calli were inoculated on shoot induction medium. On MS medium supplemented with 1.5?mg/l BAP and 0.15?mg/l Indole-3-butyric acid (IBA), 96.66% of the petiole-derived calli responded with an average number of 3.56 shoots per culture. The highest root formation frequency (96.66%), root number (5.5), and root length (4.83?cm) were achieved on MS medium containing 2.0?mg/l IBA plus 0.1?mg/l Naphthaleneacetic acid (NAA). The rooted shoots were successfully transferred to field condition and the substrate with the mixture of cocopeat and perlite (1:1) had the highest survival rate (96.66%). This is the first report of an effective in vitro organogenesis protocol for F. religiosa by indirect shoot organogenesis through axenic seedling derived petiole explants, which can be efficiently employed for conservation of this important medicinal plant species as well as the utilization of active biomolecules.  相似文献   

5.
Root-tip derived suspended callus of Oryza sativa cv. Thaipei showed the capacity for plant regeneration via organogenesis. Cell cultures were induced in liquid Murashige-Skoog medium containing 2 mg/l 2.4-dichlorophenoxyacetic acid. Dicamba or Picloram were effective for induction of organogenesis. Shoots and roots differentiated following subculture on medium lacking auxins but containing kinetin. At 1 and 4 mg/l Dicamba and 1 mg/l Picloram normal green plants were regenerated whereas with 7 mg/l Dicamba in the medium only albino plantlets were obtained. Regenerated plantlets were grown to maturity and set seed. Cell suspension cultures, initiated from the root-tip derived calli, provided suitable material for protoplast isolation.Abbreviations BM Basic medium - 2.4 -D 2,4-dichlorophenoxyacetic acid - Dicamba 3,6-dichloro-2-methoxy benzoic acid - Picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

6.
The genus Zephyranthes rosea is a member of the family Amaryllidaceae. The plant is widely cultivated as ornamental. The objective of this study was to optimize an in vitro propagation method for the production of genetically stable Z. rosea plant. The chromosomal status of the regenerated plants was also studied to determine their ploidy levels and to identify the structural and numerical variations, if any. Two explants of Zephyranthes rosea, i.e. bulb scale and flower bud (3–4 mm each), were used and incubated in a culture room at 25 ± 2°C in which two different types of calli were induced from two sources. The MS medium amended with 2,4-dichlorophenoxyacetic acid (2,4-D) (0.5–2.0 mg/l) successfully induced callus from bulb-scale explants (50.25–57.5%). The addition of coconut water (10%) in 2,4-D-added medium further improved the callus induction frequency (68.4%). Bulb-scale calli were found to be highly regenerative while flower-bud calli did not show any organogenetic responses. The use of plant growth regulators, such as naphthaleneacetic acid (NAA) + benzylaminopurine (BAP), was found to be very effective for shoot bud development; maximum shoot number (11.50/callus mass) was observed in NAA (0.5 mg/l) + BAP (1.0 mg/l) added medium. Histological analysis of callus revealed that the origin of the shoot bud was de novo. Rooting frequency (65.25%) and the number of roots (7.5/shoot) were best achieved in indole-3-butyric acid (4.0 mg/l)-amended medium, followed by indole-3-acetic acid (4.0 mg/l). The regenerated Z. rosea plants showed 2n = 24 chromosome numbers.  相似文献   

7.
Organogenesis and plant regeneration in Taxus wallichiana (Zucc.)   总被引:1,自引:0,他引:1  
We describe an efficient process for regeneration of Taxus wallichiana plants via shoot organogenesis from callus cultures derived from zygotic embryos. Zygotic embryos cultured on half strength Lloyd and McCown's basal medium supplemented with SH vitamin ((1/2) WPMSH), 0.5 mg l(-1) 6-benzyladenine (BA) in combination with 1.0-2.0 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D) or alpha-Napthaleneacetic acid (NAA) produced two morphologically distinct types of calli-compact, green callus (CG) and compact, yellow (CY) callus after 4 weeks of culture. Optimum frequency (63%) of adventitious shoot bud induction was achieved in CG callus (3.0+/-0.67 shoot buds per gram of CG callus) when cultured on (1/2) WPMSH basal medium supplemented with 2.5 mg l(-1) BA after 4 weeks. The inclusion of 1% activated charcoal (AC) to (1/2) WPMSH basal medium (shoot elongation medium) led to maximum shoot elongation (2.15 cms). Microshoots rooted in high frequency (40%) in MS basal medium in which the concentration of nitrates was reduced to one-fifth the normal concentration after 4 months of culture.  相似文献   

8.
Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii   总被引:1,自引:0,他引:1  
In this study, mature zygotic embryos, plant growth regulators, and various media were tested with the aim of developing an efficient regeneration system for plantlets of the bamboo species Dendrocalamus hamiltonii. Callus formation was induced in explants cultured in Murashige and Skoog (MS) medium supplemented with 1.0–3.0 mg/l 2,4-dichlorophenoxyacetic acid. Optimal shoot differentiation and subsequent shoot growth were also obtained in MS medium supplemented with 2 mg/l benzyladenine, 1 mg/l kinetin, and 1 mg/l naphthaleneacetic acid. Root induction was enhanced by the addition of 5 mg/l indole-3-butyric acid to the culture medium. Histological analysis revealed that both somatic embryogenesis and organogenesis were induced during callus initiation, shoot differentiation, and the development of plantlets from the mature zygotic embryos. Our data provide a useful basis for developing culture protocols for the regeneration of bamboo plants.  相似文献   

9.
The effects of plant growth regulators (PGR) on calli induction, morphogenesis and somatic embryogenesis of flax were studied. The organogenic and callus formation capacity were assessed for different types of source explants. Root and shoot explants were equally good material for calli production but the former produced calli without shoot regeneration capacity. Under the experimental conditions tested, 2,4-dichlorophenoxyacetic acid (2,4-D) + zeatin was the most efficient PGR combination on calli induction and biomass production. The calli were green but with no rhizogenic capacity. In contrast, and at similar concentrations, indole-3-butyric acid (IBA) + kinetin induced white or pale green friable calli with a good root regeneration capacity (60%). A factorial experiment with different combinations of 2,4-D + zeatin + gibberellic acid (GA3) levels revealed that the direction of explant differentiation was determined by specific PGR interactions and concentrations. The results from these experiments revealed that the morphogenetic pathway (shoot versus root differentiation) can be manipulated on flax explants by raising the 2,4-D level from 0.05 to 3.2 mg l?1 in the induction medium. The induction and development of somatic embryos from flax explants was possible in a range of 2,4-D + zeatin concentrations surrounding 0.4 mg l?1 2,4-D and 1.6 mg l?1 zeatin, the most efficient growth regulator combination.  相似文献   

10.
Tissue culture is one of the tools necessary for genetic engineering and many other breeding programs. Moreover, selection of high regenerating rice varieties is a pre-requisite for success in rice biotechnology. In this report we established a reproducible plant regeneration system through somatic embryogenesis. The explants used for regeneration were embryogenic calli derived from mature seeds cultured on callus induction media. For callus induction mature seeds were cultured on MS medium containing 30 g/l sucrose combined with 560 mg/l proline and 1.5-3.5 mg/l 2,4-D and 0.5-1.5 mg/l Kin. For plant regeneration, embryogenic calli were transferred to MS medium containing 30 g/l sucrose, supplemented with 1.0-3.0 mg/l BAP, 0.5-1.5 mg/l Kin and 0.5-1.5 mg/l NAA. The highest frequency of callus induction (44.4%) was observed on the MS medium supplemented with 2.5 mg/l 2,4-D, 0.5 mg/l Kin, 560 mg/l proline and 30 g/l sucrose. The highest frequency of shoot regeneration (42.5%) was observed on the MS medium supplemented with 2.0 mg/l BAP, 0.5 mg/l NAA and 0.5 mg/l Kin. The plantlets were hardened and transferred to soil in earthen pots. The developed method was highly reproducible. The in vitro developed plants showed normal growth and flowering under glasshouse conditions.  相似文献   

11.
Adventitious shoot regeneration via callus phase from in vitro leaf explants is reported for the first time in tea. Callus was obtained on Murashige and Skoog medium supplemented with varied concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) (2.5, 5.0, 7.5 and 10.0 mg/l). Rhizogenesis was observed at all concentrations of 2,4-D. Adventitious shoot buds developed indirectly on leaf explants after prolonged culture for 16 weeks on medium supplemented with 10.0 mg/l 2,4-D. GC analysis of the medium and the tissues at different stages of development showed that specific levels of 2,4-D in the tissue were responsible for morphogenesis. Shoot buds developed on rhizogenic calli, only when 2,4-D declined to undetectable or negligible concentrations in the tissue probably due to detoxification and metabolism. Alternatively, shoot buds could also be evoked when rhizogenic calli were transferred to medium supplemented with low concentration of 2,4-D (1.5 mg/l). The adventitious nature of the shoots was confirmed through histological studies.  相似文献   

12.
Summary A transformation system that allows regeneration of transgenic pea plants from calli selected for antibiotic resistance was developed. Explants from axenic shoot cultures and seedling epicotyls were cocultivated with nononcogenic Agrobacterium tumefaciens strains, and transformed callus could be selected on callus-inducing media containing either 15 mg/l hygromycin or 75 mg/l kanamycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on hygromycin-resistant calli, but not on the calli selected for kanamycin resistance. Regenerated shoots could subsequently be rooted and transferred into the greenhouse. In addition, the effects of different callus-inducing and growth media on organogenesis were investigated. The transformation of the calli and regenerated plants was confirmed by DNA analysis.  相似文献   

13.
The effect of phytohormones on plant regeneration in callus culture of Iris ensata Thunb. was studied. 2,4-Dichlorophenoxyacetic acid (2,4-D) proved to be the most suitable auxin for the induction and subculturing of morphogenic callus. Organogenic calluses were induced from isolated embryos at the waxphase in MS medium supplemented with 2,4-D (1.0–2.0 mg/l) and kinetin (0.2–0.5 mg/l). Changes in the medium hormonal composition favor the development of adventitious structures. The setting of adventitious shoot buds took place in the presence of 6-benzylaminopurine, while the development of shoots and root primordia was observed after 2,4-D replacement with indoleacetic acid (2.0 mg/l). The root initiation in regenerating plants required a hormone-free medium. The development of intact seedling and regenerated plants of I. ensata were studied. Analysis of the shoot structure demonstrated that in vitro cultured plants are at the juvenile stage.  相似文献   

14.
Stem segments of adult plants of Ficus religiosa L. cultured on MS medium containing 1.0 mg/l 2,4-D produced callus. Shoots were regenerated when the induced calli were transferred to medium supplemented with 0.05 to 2.0 mg/l BAP. Callus derived shoots produced roots and developed into plantlets when transferred to medium supplemented with 1.0 mg/l NAA.Abbreviations MS Murashige and Skoog (1962) - BAP 6-benzylaminopurine - NAA naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

15.
A novel method of organogenesis in neem (Azadirachta indica A. Juss.) from unfertilized ovaries is described. The Murashige and Skoog’s (MS) medium with 9 % sucrose, 1 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 μM 6-benzylaminopurine (BAP) was the best for callus induction from unfertilized ovaries. However, further proliferation of callus occurred better on MS medium supplemented with 0.5 μM 2,4-D either alone or in combination with 4.5 μM kinetin. Maximum shoot regeneration (78 %) was observed when calli, induced from ovaries of 4 mm size flower buds and proliferating on MS + 0.5 μM 2,4-D, were subcultured to MS medium containing 5 μM BAP. Histological analysis revealed that 4 mm sized flower bud corresponds to a 2-nucleate stage of embryo sac. The shoots were then multiplied by forced axillary branching on MS medium supplemented with 1.0 μM BAP and 250 mg dm−3 casein hydrolysate. The shoots could be rooted on 1/4 strength MS medium supplemented with 0.5 μM indole-3-butyric acid (IBA) at a frequency of 79 %. Cytological analysis by root tip squash preparations revealed that all the plantlets were diploids. These plants were subsequently hardened and established in soil with transplantation rate of 81.8 %.  相似文献   

16.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

17.
Summary Calli were initiated from seedling roots in rice (Oryza sativa L. var. Tadukan) and subcultured at 45-day intervals on MS medium supplemented with 2 mg/l 2,4-D. Sectors of callus which differentiated shoot meristems (green spots) under the same 2,4-D concentration were selected from the calli subcultured 90 days after initiation. The selection was continued for about 2 years. Responses to 2,4-D between original and selected lines differed considerably, although differentiation was not generally seen in rice callus in the presence of 2 mg/l 2,4-D. After 180 days, calli of the selected line differentiated into numerous shoot-bud primordia and grew out new callus tissues under 2 mg/l 2,4-D concentration; the frequency of the differentiation exceeded 90%. On the other hand, no calli of non-selected line differentiated into shootbuds under 2 mg/l 2,4-D, and the frequency of the shootbud was only about 50% under lower 2,4-D concentration (0.1 mg/l). The pattern and activity of peroxidase isozyme varied markedly between calli of the selected and non-selected lines. First, two strong peroxidase bands which show fast mobility and one intermediate peroxidase band with slow mobility were detected only in the calli of selected line. Secondly, changes in band pattern of proteins separated by SDS-PAGE were observed. In the calli of selected line, there was a loss of the polypeptide bands with molecular weight of 24 and 42 K in the selected calli, but they were clearly present in the unselected line. The appearance of new peroxidase isozyme bands and loss of polypeptide bands, change in response to auxin and increased ability for shoot bud differentiation are closely correlated to each other.  相似文献   

18.
Summary Expiants ofCichorium intybus L. storage roots were grownin vitro on a modified Heller's medium lacking auxins and cytokinins, or supplemented with auxins (either 2,4-D or NAA) alone or with a cytokinin (kinetin) or auxin and kinetin combinations in different concentrations. The morphogenetic responses of root explants varied with the different hormonal treatments. The best response for callus growth was obtained in presence of 2,4-D. On the contrary, kinetin alone was very effective for shoot induction, increasing the formation of adventitious buds (up to 100% of the explants) in respect to control (hormone-free medium). NAA induced either shoot differentiation (in a medium frequency) or root formation. Expiants excised from root zones near to apex, which showed on hormone-free medium a very low regenerative capacity (lower than proximal zones of the root), responded to kinetin by increasing significantly the number of shoots from adventitious buds.Cytological analyses in developing primary calli showed, in all media, high incidence of amitotic phenomena confirmed by DNA cytophotometry in calli at different growth stages. The histological analysis demonstrated the formation of meristematic growth centers on the organogenesis inducing media and the subsequent development of these meristemoids as shoot (or root) apices in the callus mass.The results are discussed in comparison with previous observations of the authors inCichorium intybus (Caffaro et al. 1982) and in relation to the action of hormonal treatments on callus formation and organogenesis. The cytological and histological results are also discussed in relation to the hormonal composition of the medium.  相似文献   

19.
Somatic embryogenesis in the wild rice species (Oryza perennis) was induced from cultured mature seeds and young inflorescences. Murashige and Skoog's (MS) medium supplemented with 2 mg/l 2,4-D and 0.2 mg/l BAP was used for induction of a compact, white nodular callus and somatic embryos. Plant regeneration occurred with the tranfer of the nodular callus to MS basal medium containing 0.5 mg/l IAA, 0.5 mg/l NAA, 4 mg/l BAP and 500 mg/l casein hydrolysate. The embryogenic nature of the callus from both explants was maintained over 10 subcultures for about 12 months. Plant regeneration with respect to the number of calli plated from the 6th to 10th passage varied from 80% to 60% for young inflorescence derived callus and from 75% to 69.8% for seed-derived callus.Abbreviations MS Murashige and Skoog medium - BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthalene acetic acid - CH casein hydrolysate  相似文献   

20.
Pogonatherum paniceum (Poaceae) is a perennial plant with good potential for eco-recovery and ornamental function. This study presents in vitro culture systems of simple hormonal regulation of somatic embryogenesis and shoot organogenesis from mature caryopses. Mature caryopses of P. paniceum were grown on Murashige and Skoog medium with 3% sucrose (w/v) and various concentrations or combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). Morphological development was analyzed by light microscope after histological sectioning. Four types of callus were induced by different concentrations of 2,4-D. Type I callus was regenerated via somatic embryogenesis; type II callus failed to produce any regeneration; type III callus had both somatic embryogenesis and shoot organogenesis capacities; and type IV callus only displayed shoot organogenesis capacity. Regarding hormone combinations used in this study, NAA only induced type IV callus and BAP only induced direct multiple shoot formation. The combinations of 2,4-D and NAA induced type III callus. Several of the regeneration pathways were simply controlled by one or two kinds of plant hormones. The established systems will be helpful for further research on the developmental mechanism of switch between somatic embryogenesis and shoot organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号