首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A recently developed immobilization method, characterized by the adsorption of the mycelia onto a glass-carrier in a fixed-bed reactor, was applied for citric acid production by Aspergillus niger ATCC 9142, and compared with conventional culture techniques.In a fixed-bed reactor and in a stirred fermenter a rapid gluconic acid production started immediately after nitrate exhaustion, though the pH was below 2.5 During a second production phase a comparatively small amount of citric acid was formed.In surface and shaken-flask cultures nearly no gluconic acid could be found, whereas citric acid yields were significantly higher than in the fixed-bed reactor and in the stirred fermenter.Manganese (0.8×10–7 Mol×dm–3 after 6 days incubation) from the stainless steel parts of the vessel seemed to be responsible for both gluconic acid production and small citric acid yields in the stirred fermenter and in the fixed-bed reactor.  相似文献   

2.
Fur mutants FPA12 and FF13 of strains Pseudomonas aeruginosa PAO1 and Fe10, respectively, were prepared and their production of pyoverdin evaluated. The strains were cultivated in stirred bioreactor in iron-deficient and iron-supplemented medium containing Casamino acids (CA) or succinate as a source of carbon and energy. When the pyoverdin production rate reached its maximum, the demand of iron-depleted cultures for O2 was decreased. Mutant FF13 overproduced pyoverdin in both iron-depleted (862 mg l–1) and iron-supplemented (428 mg l–1) CA medium and could also be used to produce pyoverdin when grown in a conventional stirred tank fermenter.  相似文献   

3.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

4.
The effect of various concentrations of glutamate on arachidonic acid (AA) production from Mortierella alpina in shaker flask culture was studied. Glutamate supplementation promoted Mortierella growth, accelerated substrate metabolism, and increased AA production, and a concentration of 0.8 g/l glutamate resulted in the greatest AA yield (1.41 g/l). In 10 l airlift stirred fermenter culture, AA yield in the cultures exposed to 0.8 g/l glutamate was also greater than that in the control (0.56 g/l).  相似文献   

5.
In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates (0.05 h(-1) to 0.40 h(-1)) using a 2 L stirred tank fermenter with a working volume of 600 ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, mu-max, was estimated at 0.40 h(-1), and the Monod cell growth saturation constant, Ks, at approximately 0.25 g/L. Maximum cell viability (1.3 x 10(10) CFU/ml) was achieved in the dilution rate range of D = 0.28 h(-1) to 0.35 h(-1). Both maximum viable cell yield and productivity were achieved at D = 0.35 h(-1). The continuous cultivation of L. rhamnosus at D = 0.35 h(-1) resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.  相似文献   

6.
Batch cultures of Trichoderma viride have been carried out in a 10 liter stirred fermenter a controlled pH values of 2.5, 2.7, 3.0, and 4.0 and without pH control at a temperature of 28 degrees C. Cell and glucose concentrations and dissolved oxygen values are reported. The yield coefficient was found to be constant at 0.40 kg cells/kg glucose and the maximum specific growth rate was linearly correlated with the hydrogen ion concentration.  相似文献   

7.
Summary Three different stirred bioreactors of 0.5 to 12 l volume were used to scale up the production of a human monoclonal antibody. Inoculation density and stirrer speed were evaluated in batch cultures, whereas dilution rate and pH were optimized in chemostat cultures with respect to high specific antibody production rate and high antibody yield per time and reactor volume. The cell line used for the experiments was a heterohybridoma, producing immunoglobulin M (IgM) against lipopolysaccharide of Pseudomonas aeruginosa. Cells were cultured in spinner flasks of 500 ml liquid volume for adaptation to stirred culture conditions. Subsequently cells were transferred to the 1.5-1 KLF 2000 bioreactor and to the 12-1 NLF 22 bioreactor for pilot-scale cultures. Chemostat experiments were done in the 1.5-1 KLF bioreactor. Cell density, viability, glucose and lactate and antibody concentration were measured during culture experiments. In batch cultures in all three stirred bioreactors, comparable maximal cell densities and specific growth rates were achieved. Chemostat experiments showed that at a pH of 6.9 and a dilution rate of 0.57 per day the specific antibody production rate was threefold higher than similar experiments done at pH 7.2 with a dilution rate of 0.36 per day. By optimizing pH and dilution rate in chemostat cultures the daily yield of human IgM increased nearly threefold from 6 to 16 mg/day and per litre of reactor volume. The yield per litre of medium increased twofold. Correspondence to: U. Schürch  相似文献   

8.
The growth and metabolic activity of cultured cells derived from human adipose tissue (CAT cells) were studied and compared to cultured skin fibroblasts. The morphological appearance of the CAT cells was distinctly different from that of fibroblasts. The growth rate of CAT cells as measured by 3H-thymidine incorporation was much slower than the fibroblast growth rate. Cultured CAT cells synthesized significantly 14C-glucose, while fibroblast cultures had a higher metabolic rate as measured by CO2 production. Insulin stimulated 3H-thymidine incorporation in both CAT and fibroblast cultures. The CAT cells did not show a consistent insulin response of lipid or CO2 production, but this may be a reflection of donor age or nutritional status. Even though the CAT cell may be a type of stromal cell peculiar to adipose tissue rather than a preadipocyte or adipocyte, it may prove useful in studies of human obesity.  相似文献   

9.
The bioconversion of L-phenylalanine (L-Phe) to 2-phenylethanol (PEA) by the yeast Saccharomyces cerevisiae is limited by the toxicity of the product. PEA extraction by a separate organic phase in the fermenter is the ideal in situ product recovery (ISPR) technique to enhance productivity. Oleic acid was chosen as organic phase for two-phase fed-batch cultures, although it interfered to some extent with yeast viability. There was a synergistic inhibitory impact toward S. cerevisiae in the presence of PEA, and therefore a maximal PEA concentration in the aqueous phase of only 2.1 g/L was achieved, compared to 3.8 g/L for a normal fed-batch culture. However, the overall PEA concentration in the fermenter was increased to 12.6 g/L, because the PEA concentration in the oleic phase attained a value of 24 g/L. Thus, an average volumetric PEA production rate of 0.26 g L(-1) h(-1) and a maximal volumetric PEA production rate of 0.47 g L(-1) h(-1) were achieved in the two-phase fed-batch culture. As ethanol inhibition had to be avoided, the production rates were limited by the intrinsic oxidative capacity of S. cerevisiae. In addition, the high viscosity of the two-phase system lowered the k(l)a, and therefore also the productivity. Thus, if a specific ISPR technique is planned, it consequently has to be remembered that the productivity of this bioconversion process is also quickly limited by the k(l)a of the fermenter at high cell densities.  相似文献   

10.
Summary Limitations in mass and momentum transfer coupled with high hydrostatic pressures create significant spatial variations in dissolved gas concentrations in large fermenters. Microorganisms are subjected to fluctuating environmental conditions as they pass through the zones in a stirred vessel or along a closed loop fermenter.A 7-litre fermenter was modified to simulate the dissolved gas and hydrostatic pressure gradients in large vessels.The effect of cycling dissolved oxygen tension (DOT) on penicillin production by Penicillium chrysogenum P1 was investigated. The fermentation was affected by evironmental conditions such as medium composition, pH, size of inoculum, stirrer speed and DOT. Inoculum size below 10% (v/v) and stirrer speeds above 850 rpm caused significant reductions in specific prenicillin production rates (qpen). qpen values were measured at different constant DOT levels. Below 30% air saturation qpen decreased sharply and no production was observed at 10%. Penicillin synthesis was impaired irreversibly below 10% DOT. The same profile was observed at higher stirrer speeds and air flow rates indicating that the effect was a physiological one. Oxygen uptake of the culture was affected significantly below 7% DOT, demonstrating that the critical DOT values for penicillin production and oxygen uptake are two distinct parameters. Carrying out the fermentation at one atmosphere over pressure was found to have no effect. When the dissolved oxygen concentration of the culture medium was cycled around the critical DOT for penicillin production, a considerable decrease in the specific penicillin production rate was observed. The effect was reversible but not transient, indicating a shift in cell metabolism.These results demonstrate the unfavourable effect of fluctuating environmental conditions on culture performance in stirred tanks. They suggest that these effects should be accounted for during strain selection, process development and scale up stages of an industrial process if the productivities in small scale vessels are to be obtained.  相似文献   

11.
The production of cellulase was investigated in repeated batch experiments using immobilized cells of two Trichoderma reesei mutants in a rotating disc fermenter under very low shear stress. The enzyme production with one of the mutants was maintained for three successive batch cycles (ca. 30 days), while with the other mutant the cellulase formation lasted only one batch cycle (14 days) because of a genetic instability. The enzymatic hydrolysis of microcrystalline cellulose by the cellulase complex formed in the rotating disc fermenter is distinctly higher than that of cellulase produced in a stirred tank reactor, in which the higher shear stress partially damages the enzyme molecules, mainly those of cellobiohydrolase. The higher specific activity of the cellulase produced in the disc fermenter correlates with its higher capacity of adsorption onto microcrystalline cellulose.  相似文献   

12.
Cell growth, monoterpenoid oxindole alkaloid (MOA) production, and morphological properties of Uncaria tomentosa cell suspension cultures in a 2-L stirred tank bioreactor were investigated. U. tomentosa (cell line green Uth-3) was able to grow in a stirred tank at an impeller tip speed of 95 cm/s (agitation speed of 400 rpm), showing a maximum biomass yield of 11.9 +/- 0.6 g DW/L and a specific growth rate of 0.102 d(-1). U. tomentosa cells growing in a stirred tank achieved maximum volumetric and specific MOA concentration (467.7 +/- 40.0 microg/L, 44.6 +/- 5.2 microg/g DW) at 16 days of culture. MOA chemical profile of cell suspension cultures growing in a stirred tank resembled that of the plant. Depending on culture time, from the total MOA produced, 37-100% was found in the medium in the bioreactor culture. MOA concentration achieved in a stirred tank was up to 10-fold higher than that obtained in Erlenmeyer flasks (agitated at 110 rpm). In a stirred tank, average area of the single cells of U. tomentosa increased up to 4-fold, and elliptical form factor increased from 1.40 to 2.55, indicating enlargement of U. tomentosa single cells. This work presents the first report of U. tomentosa green cell suspension cultures that grow and produce MOA in a stirred tank bioreactor.  相似文献   

13.
Biomass production ofBifidobacterium pseudocatenulatum G4 in a milk-based medium was carried out in a 2- and 10-L stirred tank fermenters. The effects of impeller tip speed (0.28, 0.56, and 0.83 m/s) and pH control (6.0, 6.5, and 7.0) on the biomass production were investigated. The growth performance in the 2-L fermenter was significantly improved when the impeller tip speed was held constant at 0.56 m/s and the pH was controlled at 6.5. These conditions yielded a maximum biomass of 1.687×109 cfu/mL, a maximum specific growth rate of 0.504 h−1, a biomass productivity of 9.240×107 cfu/mL·h, and a biomass yield of 9.791×1010 cfu/g lactose. The consumption of milk lactose resulted in the accumulation of 7.353 g/L acetic acid and 6.515 g/L lactic acid, with an acetic:lactic ratio of 1.129. Scale-up of the fermentation process to a 10-L fermenter based on a constant impeller tip speed of 0.56 m/s yielded reproducible results with respect to biomass production and cell viability.  相似文献   

14.
Summary Suspension cultures of Vitis vinifera in a stirred fermenter showed characteristics of growth and polyphenol metabolism similar to that found in shake flasks. In the induction medium, the cells produced mainly anthocyanins (1200 mg/l), proanthocyanidins (220 mg/l), catechins (8 mg/l) and trans-piceid (30 mg/l).  相似文献   

15.
The effect of oxygen supply on the cultivation of the genetically modified tobacco cells and the formation of a foreign protein, beta-glucuronidase (GUS), was investigated in 250-mL Erlenmeyer flasks, a 5-L stirred tank fermenter, and a 7-L air-lift fermenter. The oxygen supply was varied by using different volumes of medium in the case of the 250-mL Erlenmeyer flask culture or by the different aeration rate in the case of the two types of fermenters tested. Higher oxygen supply stimulated cell growth and increased oxygen consumption rate, the level of phenolics, and GUS productions.  相似文献   

16.
A strain of Penicillium nigricans, which produces both the antifungal antibiotic griseofulvin and tremorgenic penitrem mycotoxins concurrently in static liquid culture, also elaborated both metabolites in submerged culture when stimulated by calcium chloride to sporulate. Maximum yield of penitrems (60 mg l-1) occurred within 5 d in a 60 l stirred fermenter, thus constituting the first significant process for penitrem production in submerged culture.  相似文献   

17.
Compound CBR004 which inhibits Ras farnesyl protein transferase, was produced by Bacillus licheniformis KCTC0372BP. Potassium phosphate and Tryptone were selected as media components for the production of CBR004 among 6 culture-variables using Plackett-Burman design. The yield of CBR004 was 0.99 g/l in a stirred fermenter at the C/N ratio of 1.87.  相似文献   

18.
Foam development and stability in Atropa belladonna suspensions were investigated as a function of culture conditions. Foaming was due mainly to properties of the cell-free broth and was correlated with protein content; effects due to presence of cells increased towards the end of batch culture. Highest foam levels were measured 11 days after inoculation. Air flow rate was of major importance in determining foam volume; foam volume and stability were also strongly dependent on pH. Foam flotation of plant cells was very effective. After 30 min foaming, ca. 55% of cells were found in the foam; this increased to ca. 75% after 90 min. Polypropylene glycol 1025 and 2025, Pluronic PE 6100, and Antifoam-C emulsion were tested as chemical antifoams. Polypropylene glycol 1025 and Antifoam C at concentrations up to 600 ppm had no adverse effect on growth in shake flasks; Pluronic PE 6100 has an inhibitory effect at all levels tested. Concentrations of polypropylene glycol 2025 and Pluronic PE 6100 as low as 20 ppm reduced foam volumes by a factor of ca. 10. Addition of antifoam reduced k(L)a values in bubble-column and stirred-tank bioreactors. After operation of a stirred reactor for 2 days using Antifoam C for foam control, cell production was limited by oxygen due to the effect of antifoam on mass transfer. Theoretical analysis showed that maximum cell concentrations and biomass levels decline with increasing reactors working volume due to greater consumption of antifoam to prevent foam overflow. The results indicate that when chemical foam control is used in plant cell cultures, head-space volume and tolerable foam levels must be considered to optimize biomass production. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
The green fluorescent protein (GFP) was used as a model protein to study the recombinant protein production by the strain Methylobacterium extorquens ATCC 55366. Scale-up from shake flasks to 20 l fed-batch fermentation was achieved using methanol as a sole carbon and energy source and a completely minimal culture medium. Two different expression vectors were used to express GFP. Clone PCM-GFP containing the vector pCM110 with native promoter of the methanol dehydrogenase PmxaF produced approximately 100-fold more GFP than the clone PRK-GFP containing the vector pRK310 with the heterogeneous promoter Plac. Several fed-batch fermentations with and without selective pressure (tetracycline) were run in a 20 l stirred tank fermenter using the two different clones of M. extorquens. The methanol concentration was monitored with an on-line semiconductor gas sensor in the culture broth. It was maintained at a non-toxic level of 1.4 g l(-1) with an adaptative control which regulates the methanol feed rate. The same growth profile was achieved in all fermentations. The maximum growth rate (micro(max)) was 0.18 h(-1) with an overall yield (Y(X/S)) of 0.3 g g(-1) methanol. With this high cell density fermentation process, we obtained high levels (up to 4 g l(-1)) of GFP with the clone PCM-GFP. The maximum specific GFP production (Y(GFP/X)) with this clone was 80 mg g(-1) representing approximately 16% of the total cell protein. Additional feeding of pure oxygen to the fermenter permitted a longer phase of exponential growth but had no effect on the total yields of biomass and GFP. The specific GFP production of clone PCM-GFP remained unaffected in the presence or absence of selective pressure (tetracycline), within the initial 50 h of the fermentation culture. These results suggest that M. extorquens ATCC 55366 could be an interesting candidate for overexpression of recombinant proteins.  相似文献   

20.
The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-epsilon-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- epsilon-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-epsilon-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates (qO2) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号