首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By exploiting the peculiar reactivity of [Rh2(μ-O2CBut)4(H2O)2] (1) the examples of dinuclear rhodium(II) carboxylates containing N-donor axial ligands (2, 3) [Rh2(μ-O2CBut)4L2] [where L = benzonitrile (2), 3,5-di-tert-butyl-4-hydroxybenzonitrile (3)] were synthesized and characterized by elemental analysis, IR, multinuclear NMR spectroscopy, MALDI-TOF mass spectrometry. It was found by X-ray diffraction that pairs of 3 in crystals are associated through H atoms of phenol groups to produce a dimer of dimers. The chemical oxidation of dirhodium complexes with 2,6-di-tert-butyl-4-cyanоphenol pendants studied by means of ESR method in solutions leads to the formation of phenoxyl radicals 3′ in dirhodium system. The ESR data show the interaction of the unpaired electron with ligand nuclei (1H, 14N) and 103Rh. The stability of radical complexes with phenoxyl fragments in axial position is influenced by the temperature. The enthalpy of the 3′ decomposition followed by the formation of cyanophenoxyl radical as 20 ± 1 kJ/mol was estimated. Redox transformations in dirhodium system including both metal and axial ligands were investigated by electrochemistry. CV experiments confirm the assumption of the metal oxidation (RhII→RhIII) as the first step following by the oxidation of the ligand.  相似文献   

2.
The Schiff base ligands 2-(2,6-diisopropylphenyliminomethyl)phenol H(L1), 5-diethylamino-2-(2,6-diisopropylphenyliminomethyl)phenol H(L2), 2,4-di-tert-butyl-6-(2,6-diisopropylphenyliminomethyl)phenol H(L3), 3-(2,6-diisopropylphenyliminomethyl)naphthalen-2-ol H(L4) and 4-(2,6-diisopropylphenyliminomethyl)-5-hydroxymethyl-2-methylpyridin-3-ol H(L5) have been synthesized by the condensation, respectively, of salicylaldehyde, 4-(diethylamino)salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, 2-hydroxy-1-napthaldehyde and pyridoxal with 2,6-diisopropylaniline. The copper(II) bis-ligand complexes [Cu(L1)2] 1, [Cu(L2)2] 2, [Cu(L3)2] 3, [Cu(L4)2] 4 and [Cu(L5)2] · CH3OH 5 of these ligands have been isolated and characterized. The X-ray crystal structures of two of the complexes [Cu(L1)2] 1 and [Cu(L5)2] · CH3OH 5 have been successfully determined, and the centrosymmetric complexes possess a CuN2O2 chromophore with square planar coordination geometry. The frozen solution EPR spectra of the complexes reveal a square-based CuN2O2 chromophore, and the values of g and g/A index reveal enhanced electron delocalization by incorporating the strongly electron-releasing -NEt2 group (2) and fusing a benzene ring on sal-ring (4). The Cu(II)/Cu(I) redox potentials of the Cu(II) complexes reveal that the incorporation of electron-releasing -NEt2 group and fusion of a benzene ring lead to enhanced stabilization of Cu(II) oxidation state supporting the EPR spectral results. The hydrogen bonding interactions between the two molecules present in the unit cell of 5a generate an interesting two-dimensional hydrogen-bonded network topology.  相似文献   

3.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

4.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

5.
Four-coordinate complex MnIII(ISQ-Pri)(AP-Pri) (1), where ISQ-Pri = 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzosemiquinonate anion-radical, AP-Pri = 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-amidophenolate dianion, has been prepared by the reaction of Mn2(CO)10 with free 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzoquinone (IBQ-Pri) in the molar ratio 1:4 in toluene. In contrast to manganese, rhenium carbonyl reacts with o-iminobenzoquinone to form complex ReII(ISQ-Pri)2(CO)2 (2) with the retention of two carbonyls in coordination sphere of rhenium. The complexes have been characterized by IR, UV-Vis, and EPR spectroscopies. Molecular structures of compounds 1 and 2 have been determined by single-crystal X-ray crystallography. Compound 1 is centro-symmetric square-planar molecule with delocalized mixed valent state of AP-Pri and ISQ-Pri ligands. EPR spectrum of 1 in solid at 300-77 K is typical for manganese complexes with S = 3/2 state. The effective magnetic moment of 1 is 1.96 μB at temperature 5 K as it was established by variable-temperature magnetic susceptibility measurements. Six-coordinate octahedral complex 2 possesses an S = 1/2 ground state, which is attained via strong intramolecular antiferromagnetic interaction between t2g orbital unpaired electron of the low spin ReII ion and the unpaired electron on π-orbital of the radical ligand.  相似文献   

6.
Reaction of M(OAc)2 (MII = CuII for 1, CoII for 2, and PbII for 3) with pyridine-2,6-dicarboxylic acid (H2pydc) in presence of a dipyridyl spacer 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (bpo) affords three novel metal-organic supramolecular networks [Cu2(bpo)(pydc)2(H2O)3] · 2.75H2O(1), [Co(bpo)(pydc)(H2O)2] · (H2O) (2) and [Pb(pydc)]n (3), which have been structurally determined by single-crystal X-ray diffraction. The dimeric Cu-pydc coordination framework bridged by a bpo spacer in 1 is hydrogen-bonded to four others to result in a two-dimensional (2-D) sheet array. The neutral monomeric molecules in 2 have an ordered 3-D stacking stabilized via hydrogen bonds and significant π-π interactions in the lattice, possessing large porous channels with the inclusion of guest solvates. In coordination polymer 3, the PbII ion takes the unusual distorted capped trigonal prismatic geometry (PbNO6) and each pydc dianion binds to four PbII centres to form a 2-D infinite network. The thermal stabilities of these complexes have also been investigated.  相似文献   

7.
Four octamolybdate-based compounds, that is, CuII2(L1)4(Mo8O26) (1), CuII2(HL2)4(Mo8O26)2 (2), [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (3) and [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (4) (L1 = 2-(2-pyridyl)imidazole, L2 = 2-(1-(pyridine-3-ylmethyl)-1H-imidazol-2-yl)pyridine), have been hydrothermally synthesized via changing the reaction conditions and structurally characterized by single-crystal X-ray diffraction. With L1 ligand, we obtained compound 1, which is a 0D molecule and extends to a 3D supramolecular structure via hydrogen-bonding interactions. By using L2 instead of L1 ligand, compound 2 comes into being which is as well a discrete molecule and further extended to a 3D supramolecular structure by hydrogen bonds. Intriguingly, compounds 3 and 4 are supramolecular isomers: the former is a 2D 4-connected network and the latter is a 3D (3,4)-connected framework. The measurements of diffuse reflectance for compounds 1-4 indicate that they are potential wide gap semiconductors.  相似文献   

8.
We synthesized iron(III), cobalt(II), copper(II) and zinc(II) complexes [FeIII(HBPClNOL)Cl2]·H2O (1), [CoII(H2BPClNOL)Cl2] (2), [CuII(H2BPClNOL)Cl]Cl·H2O (3), and [ZnII(HBPClNOL)Cl] (4), where H2BPClNOL is the ligand (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine). The complexes obtained were characterized by elemental analysis, IR and UV-visible spectroscopies, electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and cyclic voltammetry. X-ray diffraction studies were performed for complexes (3) and (4) revealing the presence of mononuclear and dinuclear structures in solid state for (3). However, the zinc complex is mononuclear in solid state. Biological studies of complexes (1)-(4) were carried out in vitro for antimicrobial activity against nine Gram-positive bacteria (Staphylococcus aureus strains RN 6390B, COL, ATCC 25923, Smith Diffuse, Wood 46, enterotoxigenic S. aureus FRI-100 (SEA+), FRI S-6 (SEB+) and SEC FRI-361) and animal strain S. aureus LSA 88 (SEC/SED/TSST-1+). The following sequence of inhibition promoted by the complexes was observed: (4) > (2) > (3) > (1), showing the effect of the metal on the biological activity. To directly observe the morphological changes of the internal structure of bacterial cells after the treatment, transmission electron microscopy (TEM) was employed. For the most active complex [ZnII(HBPClNOL)Cl] (4), granulation deposits around the genetic material and internal material leaking were clearly detected.  相似文献   

9.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

10.
To further investigate the solvent effect on the structures of coordination polymers, a series of polymeric CuII complexes have been synthesized and characterized by single-crystal diffraction through combining of 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid (H2BDC-Cl4) with CuII perchlorate. The products including {[Cu(BDC-Cl4)(py)3] · H2O}n (py = pyridine) (1), {[Cu(BDC-Cl4)(dioxane)(H2O)2] · dioxane}n (2), and {[Cu2(BDC-Cl4)2(DMF)4] · 2G}n (G = MeOH in 3 and G = EtOH in 4) have been obtained in different mixed solvents systems. With the change of the solvent system from pyridine/H2O (1:1) into dioxane/H2O (1:1), the infinite 1-D CuII-BDC-Cl4 chain motif in 1 is tuned into the 2-D (4,4) layered structure in 2 with the coordination of dioxanes to copper atoms. When the solvent system is changed into DMF/MeOH (1:1), then into DMF/EtOH (1:1), similar 1-D CuII-BDC-Cl4 double chains are afforded in 3 and 4 with different solvents inclusion. Moreover, the judicious choice of binding-guests leads to numerous coordination geometries of CuII centers and final dissimilar supramolecular lattices of 1-4 from 1-D to 3-D via robust hydrogen-bonding interactions. The spectroscopic, thermal, and fluorescent properties of 1-4 have also been investigated.  相似文献   

11.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

12.
Addition of 3,6-di-tert-butyl-o-benzoquinone (3,6-DBBQ) to SnCl2 in THF leads to the oxidation of Sn(II) to Sn(IV) with formation of catecholate complex (3,6-DBCat)SnCl2 · 2THF (1), where 3,6-DBCat is 3,6-di-tert-butyl-catecholate dianion. The reaction of 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzoquinone (IBQ-Pri) also proceeds on the oxidative-addition mechanism yielding bis-iminosemiquinonato species (ISQ-Pri)2SnCl2(2), where ISQ-Pri is anion-radical 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzosemiquinolate. The complexes have been characterized by IR, X-band EPR, 1H NMR (for 1) spectroscopy and magnetochemistry (for 2). X-ray analysis data show the distorted octahedral environment of tin(IV) for both complexes. Complex 1 is diamagnetic (ground state S = 0), while 2 has triplet ground state (S = 1, biradical). Catecholate complex 1 is able to be a spin trap for different organic radicals.  相似文献   

13.
A dicyanamide bridged 2D polynuclear complex of copper(II) having molecular formula [Cu2(L)(μ1,5-dca)2]n (1) has been synthesized using the Schiff base ligand N,N′-bis(salicylidene)-1,3-diaminopentane, (H2L) and sodium dicyanamide (dca). The complex presents a 2D hexagonal structure formed by 1,5-dca singly bridged helical chains connected through double 1,5-dca bridges. The chelating characteristics of the H2L Schiff base ligand results in the formation of copper(II) dimer with a double phenoxo bridge presenting a very strong antiferromagnetic coupling in the copper(II) derivative (1) (J = −510 cm−1). The dimeric asymmetric unit of 1 is very similar to the active site of the catechol oxidase and, as expected, also presents catalytic activity for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone in presence of O2, as demonstrated by kinetic studies of this oxidation reaction monitored by absorption spectroscopy resulting in high turnover number (Kcat = 259 h−1).  相似文献   

14.
The heteronuclear water-soluble and air-stable compounds [M(H2O)5M′(dipic)2] · mH2O (M/M′ = CuII/CoII (1), CuII/NiII (2), CuII/ZnII (3), ZnII/CoII (4), NiII/CoII (5), m = 2-3; H2dipic = dipicolinic acid) have been prepared by self-assembly synthesis in aqueous solution at room temperature, and characterized by IR, UV-Vis and atomic absorption spectroscopies, elemental and X-ray diffraction single crystal (for 1 and 2) analyses. 1-5 represent the first examples of heteronuclear dipicolinate compounds with 3d metals. Extensive H-bonding interactions involving all aqua ligands, dipicolinate oxygens and lattice water molecules further stabilize the dimetallic units by linking them to form three-dimensional polymeric networks.  相似文献   

15.
The synthesis and crystal structure of four new copper(I) and copper(II) supramolecular amine, and amine phosphonate, complexes is reported. Reaction of copper(I) with 2-,9-dimethyl-1-10-phenanthroline (dmp) produced a stable 4-coordinate Cu(I) species, [Cu(I)(dmp)2]Cl · MeOH · 5H2O (2), i.e., the increased steric hindrance in the ‘bite’ area of dmp did not prevent interaction with the metal and provided protection against oxidation which was not possible for the phen analogue [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36]. Subsequent addition of phenylphosphonic acid to (2) produced two structures from alternative synthetic routes. An ‘in situ’ process yielded red block Cu(I) crystals, [Cu(I)(dmp)2] · [C6H5PO3H2 · C6H5PO3H] (4), whilst recrystallisation of (2) prior to addition of the acid (‘stepwise’ process) produced a green, needle-like Cu(II) complex, [Cu(II)(dmp) · (H2O)2 · C6H5PO2(OH)] [C6H5PO2(OH)] (3). However, addition of excess dmp during the ‘stepwise’ process forced the equilibrium towards product (4) and resulted in an optimum yield (99%). The structure of (4) was similar to the phen analogue, [Cu(II)Cl(phen)2] · [C6H5PO2(OH) · C6H5PO(OH)2] (1) [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36], but the presence of dmp exerted some influence on global packing, whilst (3) exists as a polymeric layered material. In contrast, reaction of copper(I) with di-2-pyridyl ketone (dpk), followed by phenylphosphonic acid produced purple/blue Cu(II) species, [Cu(II)(dpk · H2O)2] Cl2 · 4H2O (5), and [Cu(II)(dpk · H2O)2] · [C6H5PO2(OH)2 · C6H5PO(OH)2] (6), respectively, i.e., in both cases oxidation of copper occurred. Solid-state luminescence was observed in (2) and (4). The latter showing a 5-fold enhancement in intensity.  相似文献   

16.
Synthesis and characterization of six new complexes [Cu{2,6-(MeO)2nic}2(H2O)]2 (1), [Cu{2,6-(MeO)2nic}2(H2O)]2 · 3DMF (2), where 2,6-(MeO)2nic is 2,6-dimethoxynicotinate and DMF is N,N-dimethylformamide, [Cu(3-pyacr)2(H2O)2]n (3), where 3-pyacr is trans-3-(3-pyridyl)acrylate, [Cu(en)2(H2O)2]X2, where X is 2,6-(MeO)2nic (4) or 3-pyacr (5) and en is ethylenediamine, and [Cu(3-pyacr)2(dien)(μ-H2O)0.5]2 · 7H2O (6), where dien is diethylenetriamine are reported. The characterizations were based on elemental analysis, infrared, electronic and EPR spectra, and magnetic measurements over a temperature range of 1.8-300 K. Crystal structures of complexes 2, 4 and 6 have been determined by X-ray single crystal structure analysis. The available evidence supports dimeric structure of the acetate type for 1 and 2. Crystal structure of polymeric complex 3 has been determined from X-ray powder diffraction data. The 3-pyacr anions in pairs form bridges between two octahedrally surrounded copper(II) atoms in such a way that one 3-pyacr is coordinated to the first CuII by an oxygen atom of its carboxyl group and to the second CuII by the nitrogen atom of its pyridine ring, while the other is coordinated to the same two CuII atoms in a similar way, but the other way round. Environment about the copper(II) atom for 4 and 5 is a square bipyramid (4+2).In complex 6 both CuII central atoms are bridged only by an axial water molecule forming a dimeric structure with the considerably long separation of CuII atoms of 5.194 Å and the angle Cu1-O3-Cu1a of 150.79°. Moreover, results of the quantitative determination of antimicrobial activity of the complexes as well as above organic ligands alone are discussed.  相似文献   

17.
The oxidative dealkylation of 2,4,6-tri-tert-butylphenol (TTBP) has been investigated using molecular oxygen and [Cu(NO3(GBHA)](NO3) as catalyst, where GBHA is N,N′-bis((benzimidazol-2-yl)methyl)hexanediamide [(a) M. Gupta, P. Mathur, R.J. Butcher, Inorg. Chem. 40 (2001) 878; (b) M. Gupta, S.K. Das, P. Mathur, A.W. Cordes, Inorg. Chim. Acta 353 (2003) 197; (c) S. Tehlan, M.S. Hundal, P. Mathur, Inorg. Chem. 43 (2004) 6589; (d) F. Afreen, P. Mathur, A. Rheingold, Inorg. Chim. Acta 358 (2005) 1125.]. X-ray structural characterization of complex [Cu(NO3)(GBHA)](NO3) · CH3OH confirms that the Cu (II) ion is in a distorted square pyramidal geometry (τ = 0.168). The TTBP oxidation reaction proceeds via tri-tert-butylphenoxyl radical producing two products 2,6-di-tert-butyl-1,4-benzoquinone (A) and 4,6-di-tert-butyl-1,2-benzoquinone (B). Both A and B have been well characterized by 1H NMR, 13C NMR, UV-Vis and mass data.  相似文献   

18.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

19.
The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2′-BPNO)]n (2), [Cu2(C6H5COO)4(4,4′-BPNO)]n (3), [Cu(p-OH-C6H4COO)2(4,4′-BPNO)2·H2O]n (4), (where PNO = pyridine N-oxide, 2,2′-BPNO = 2,2′-bipyridyl-N,N′-dioxide, 4,4′-BPNO = 4,4′-bipyridyl-N,N′-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O]n·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.  相似文献   

20.
To compare the cytotoxicities and the DNA-binding properties in tetranuclear complexes with different bridging ligands, two tetracopper(II) complexes with formulae of [Cu4(oxbe)2Cl2(bpy)2]·4H2O (1) and [Cu4(oxbm)2Cl2(bpy)2]·2H2O (2) were synthesized, where H3oxbe and H3oxbm stand for N-benzoato-N′-(2-aminoethyl)oxamide and N-benzoato-N′-(1,2-propanediamine)oxamide, respectively, and bpy is 2,2′-bipyridine. Complex 1 was characterized by elemental analyses, IR and electronic spectra and single-crystal X-ray diffraction. The crystal structure reveals the presence of the circular tetranuclear copper(II) cations which are assembled by a pair of cis-oxamido-bridged dinuclear copper(II) units through carboxyl bridges. The crystal structure of complex 2 has been reported in our previous paper. However, the bioactivities were not studied. Cytotoxicities experiments reveal that both the two complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549, and complex 1 has the better activities than those of complex 2. The results of the interactions between the two complexes and herring sperm DNA (HS-DNA) suggest that the two complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 3.93 × 104 M−1 (1) and 2.48 × 104 M−1 (2). These results indicated that the bridging ligands may play an important role in the cytotoxicities and the DNA-binding properties of tetranuclear complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号