首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

2.
Heating an aqueous solution of the trinuclear ‘basic’ chromium(III) acetate led to the formation of several products which were separated by ion-exchange chromatography. Crystals of a new cyclic, hexanuclear Cr(III) compound, [Cr6(OH)10(O2CCH3)6(H2O)4]Cl2·13H2O (3·Cl2·13H2O) were obtained upon elution of the violet complex 3 with 0.5 M NaCl and slow evaporation of the eluent. The six chromium atoms in complex 3 form an almost planar, irregular hexagon with an overall symmetry close to C2h. By heating solid ‘basic’ chromium(III) acetate at 300 °C, followed by ion-exchange separation, a new hexanuclear complex, [Cr6O3(OH)(O2CCH3)9(H2O)4]2+ (4) has been obtained. Complex 4 has a {Cr6O4} core, which consists of a {Cr4O4} cubane type inner core with two external chromium centers attached to μ4-oxo(cube) ligands. A similar procedure, using ‘basic’ chromium(III) propionate led to the isolation of the dodecanuclear complex [Cr12O8(O2CCH2CH3)16(H2O)8]4+ (5) which has a {Cr12O8} core. The {Cr6O4} core in complex 4 can be regarded to be formed from a tetranuclear {Cr4O2} butterfly unit and a dinuclear {Cr2O2} unit. Similarly, the {Cr12O8} core in 5 can be considered to be constructed from two orthogonal {Cr6O4} units as in complex 4.  相似文献   

3.
The complexes LMoVIO2X [L?=?hydrotris(3,5-dimethylpyrazol-1-yl)borate; X?=?Cl, Br, NCS, OPh, SPh, SCH2Ph] are converted to air-stable complexes LMoVO(OSiMe3)X by one-electron coupled electron-electrophile transfer (CEET) reactions involving cobaltocene and the electrophilic reagent Me3SiCl. These complexes may also be obtained from LMoVO(OH)X by reaction with Me3SiCl in the presence of base. LMoVO(OSiMe3)(SCH2Ph) crystallises in space group P21/n, with a?=?8.526 (1) Å, b?=?23.141 (3) Å, c?=?16.499 (2) Å, β?=?103.75 (12)° and Z?=?4. The complex exhibits a distorted octahedral structure with a facially tridentate L ligand and mutually cis oxo [Mo=O?=?1.675 (4) Å], silyloxo [Mo–O?=?1.932 (4) Å] and thiolato [Mo–S?=?2.398 (2) Å] ligands. The detailed redox properties of LMoVO(OR)X (R?=?SiMe3, alkyl, aryl) differ from those of LMoVO(OH)X. Centres [MoVO(OR)] are candidates for the stable "inhibited" forms of certain molybdenum enzymes formed under conditions which apparently disfavour the catalytically active [MoVO(OH)] centres. In the coordinating solvent pyridine (py), both LMoVIO2(SPh) and LMoVO(OSiMe3)(SPh) are reduced in one-electron steps to stable LMoIVO(py)(SPh). LMoIVO(py)(SR) complexes are also obtained from LMoVIO2(SR) (R?=?Ph, CH2Ph, CHMe2) via a two-electron oxygen atom transfer reaction with tertiary phosphines in pyridine. Consequently, the Mo(IV) product is accessible via a concerted two-electron step or via two one-electron steps.  相似文献   

4.
New molybdenum complexes were prepared by the reaction of [MoVIO2(acac)2] or (NH4)2[MoVOCl5] with different N-substituted pyridoxal thiosemicarbazone ligands (H2L1 = pyridoxal 4-phenylthiosemicarbazone; H2L2 = pyridoxal 4-methylthiosemicarbazone, H2L3 = pyridoxal thiosemicarbazone). The investigation of monomeric [MoO2L1(CH3OH)] or polymeric [MoO2L1-3] molybdenum(VI) complexes revealed that molybdenum is coordinated with a tridentate doubly-deprotonated ligand. In the oxomolybdenum(V) complexes [MoOCl2(HL1-3)] the pyridoxal thiosemicarbazonato ligands are tridentate mono-deprotonated. Crystal and molecular structures of molybdenum(VI) [MoO2L1(CH3OH)]·CH3OH, and molybdenum(V) complexes [MoOCl2(HL1)]·C2H5OH, as well as of the pyridoxal thiosemicarbazone ligand methanol solvate H2L3·MeOH, were determined by the single crystal X-ray diffraction method.  相似文献   

5.
The present work was undertaken to examine and compare some biologically important properties of peroxo compounds of V(V) and W(VI) containing biogenic species as ancillary ligand. New anionic peroxovanadate(V) complex of the type Na[VO(O2)2(triglycine)]·3H2O (pV1) and a molecular peroxotungstate(VI) [WO(O2)2(triglycine)]·3H2O (pW1) were synthesized and characterized for the purpose and their stability in solution was ascertained. Studies on kinetics of inhibition of alkaline phosphatase activity by the newly synthesized compounds and series of dipeptide and amino acid containing peroxo complexes of vanadium and tungsten synthesized previously by us viz., Na[VO(O2)2(gly-gly)(H2O)]·H2O (gly-gly = glycyl-glycine), Na[VO(O2)2(asn)]·H2O (asn = asparagine), Na[VO(O2)2(gln)]·H2O (gln = glutamine), and [WO(O2)2(gly-gly)(H2O)]·3H2O, revealed that each of these species is a potent mixed-type inhibitor of the enzyme. Significant difference was noted between the peroxovanadium (pV) and peroxotungsten (pW) compounds in terms of their oxidant activity with reduced glutathione.  相似文献   

6.
The tris(pyrazolyl)borate and related tripodal N-donor ligands originally developed by Trofimenko stabilize mononuclear compounds containing MoVIO2, MoVIO, MoVO, and MoIVO units and effectively inhibit their polynucleation in organic solvents. Dioxo-Mo(VI) complexes of the type LMoO2(SPh), where L = hydrotris(3,5-dimethylpyrazol-1-yl)borate (Tp), hydrotris(3-isopropylpyrazol-1-yl)borate (TpiPr), and hydrotris(3,5-dimethyl-1,2,4-triazol-1-yl)borate (Tz) and related derivatives are the only model systems that mimic the complete reaction sequence of sulfite oxidase, in which oxygen from water is ultimately incorporated into product. The quasi-reversible, one-electron reduction of TpMoO2(SPh) in acetonitrile exhibits a positive potential shift upon addition of a hydroxylic proton donor, and the magnitude of the shift correlates with the acidity of the proton donor. These reductions produce two Mo(V) species, [TpMoVO2(SPh)] and TpMoVO(OH)(SPh), that are related by protonation. Measurement of the relative amounts of these two Mo(V) species by EPR spectroscopy enabled the pKa of the MoV(OH) unit in acetonitrile to be determined and showed it to be several pKa units smaller than that for water in acetonitrile. Similar electrochemical-EPR experiments for TpiPrMoO2(SPh) indicated that the pKa for its MoV(OH) unit was ∼1.7 units smaller than that for TpMoVO(OH)(SPh). Density functional theory calculations also predict a smaller pKa for TpiPrMoVO(OH)(SPh) compared to TpMoVO(OH)(SPh). Analysis of these results indicates that coupled electron-proton transfer (CEPT) is thermodynamically favored over the indirect process of metal reduction followed by protonation. The crystal structure of TpiPrMoO2(SPh) is also presented.  相似文献   

7.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

8.
The decaaqua-di-rhodium(II) cation has been found to be an interesting starting material in the preparation of dioxygen complexes with different N-donor ligands. Treatment of aqueous HClO4 solution of [Rh2(H2O)10]4+ with NH4OH/NH3, py and/or en results in water exchange and the formation of corresponding [Rh2II(H2O)10−m(base)n(OH)m](4−m)+ derivatives. Reaction of the latter with dioxygen afforded superoxo and/or peroxo complexes, depending on reaction conditions: [Rh2III(O2 −)(NH3)8(OH)2](ClO4)3 (1), [Rh2III(O2 −)(NH3)8(OH)(H2O)](ClO4)4 (2), [Rh2III(O2 2−)(NH3)10](ClO4)4 · 6H2O (3), [Rh2III(O2 −)(py)8(H2O)2](ClO4)5 (4), [Rh2III(O2 2−)(en)4(H2O)2](ClO4)4 (5) and [Rh2III(O2 −)(en)4(H2O)2](ClO4)5 (6). All the obtained complexes were characterized by elemental analysis, mass spectrometry, UV-Vis, IR and ESR spectroscopies and magnetic measurements.  相似文献   

9.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

10.
The Cr(V) complexes, bis(2-ethyl-2-hydroxybutyrato)oxochromate(V) ([OCrV(ehba)2]) and (2,2-bis(hydroxymethyl)-2-(bis(2-hydroxyethyl)amino)ethanolato)oxochromate(V) ([OCrV(BT)]2−), were reacted with a series of deoxyribonucleotide triphosphates. Oxidation of deoxyribose at C4′ was observed by measuring the amount of thiobarbituric acid reactive species (TBARS) produced in these reactions. For both compounds, the TBARS obtained with purine nucleotides was between 2.25 and 3.5 times greater than what was observed with pyrimidine nucleotide. This result suggests that the identity of the nucleic acid base can influence the hydrogen atom abstraction at C4′. Overall, the amount of product obtained with [OCrV(BT)]2− was significantly less than what was observed with [OCrV(ehba)2], indicating that these two Cr(V) model complexes may oxidize DNA differently.  相似文献   

11.
A tetranuclear copper(II) complex [Cu4L2(CH3COO)2(OH)2]·6H2O, in which L stands for the dianion of N-(3-carboxylsalicylidene)-4-(2-iminoethyl)morpholine, was synthesized and characterized by elemental analysis, IR, UV-Vis, TGA and X-ray single crystal diffraction. The crystal structure shows that the coordination unit is centrosymmetric with all the Cu(II) ions in square pyramidal coordination geometry. The coordination unit consists of two equivalent parts [Cu2L(CH3COO)(OH)], each containing two Cu(II) ions, a tetradentate N2O2 Schiff base dianion L2−, a CH3COO, and a OH anion. In [Cu2L(CH3COO)(OH)], the six coordination atoms (N2O4) are nearly coplanar, with Cu(1) and Cu(2) enchased in between; the phenolate oxygen and the OH oxygen as bridging atoms bind the two Cu(II) ions in close proximity; both O4 around Cu(1) and N2O2 around Cu(2) form the basal plane of the coordination square pyramids. The two parts are connected by sharing two μ3-OH oxygens and two μ2-CH3COO oxygens from each other, forming four edge-sharing coordination square pyramids around the four Cu(II) ions. A 3D network is formed through hydrogen bonding along a and c axis, and π-π interaction along b axis.  相似文献   

12.
The light green coloured complexes of general formula [ReVO(L)Cl(OH2)]Cl have been synthesised in good yields by reacting [ReVOCl3(AsPh3)2] with HL in dichloromethane in dinitrogen atmosphere. Here, L is the deprotonated form of N,N-bis(2-pyridylmethyl)amine (HL1); N-(2-pyridylmethyl)-N′,N′-dimethylethylenediamine (HL2) and N-(2-pyridylmethyl)-N′,N′-diethylethylenediamine (HL3). Single crystal X-ray structure determination of [ReVO(L1)Cl(OH2)]Cl confirms the amido binding of ReO3+ species. In the solid state of [ReVO(L1)Cl(OH2)]Cl, the coordinated and counter chloride ions are engaged in Re-Cl…H-C(ring), Cl…H-C(ring) and Re-(OH2)…Cl hydrogen bonding and forming of a supramolecular network in the solid state. The subunit of the supramolecular network consists of one eight-membered and two nine-membered hydrogen bonded rings. The average diameters of eight-membered and nine-membered rings are ∼3.70 and ∼5.26 Å, respectively.  相似文献   

13.
trans-Dioxoruthenium(VI) porphyrin complexes have been developed as one of the best-characterized model systems for heme-containing enzymes. Traditionally, this type of compounds can be prepared by oxidation of ruthenium(II) precursors with peroxyacids and other terminal oxidants under different conditions, depending on the porphyrin ligands. In this work, a new photochemical generation of trans-dioxoruthenium(VI) porphyrins has been developed by extension of the known photo-induced ligand cleavage reactions. Refluxing ruthenium(II) carbonyl porphyrins [RuII(Por)(CO)] in carbon tetrachloride afforded dichlororuthenium(IV) complexes [RuIV(Por)Cl2]. Facile exchange of the counterions in [RuIV(Por)Cl2] with Ag(ClO3) or Ag(BrO3) gave the corresponding dichlorate [RuIV(Por)(ClO3)2] or dibromate [RuIV(Por)(BrO3)2] salts. Visible-light photolysis of the photo-labile porphyrin-ruthenium(IV) dichlorates or dibromates resulted in homolytic cleavage of the two O-Cl or O-Br bonds in the axial ligands to produce trans-dioxoruthenium(IV) species [RuVI(Por)O2] bearing different porphyrin ligands.  相似文献   

14.
(NniPrCr)2222-N2) (1, NniPr = bis(2,6-diisopropylphenyl)pentane-2,4-ketiminato), formally a chromium(I) complex, was exposed to a variety of small molecules possessing hetero- or homo-atomic single, double, or triple bonds. Reaction of 1 with adamantyl azide yielded complexes in various higher oxidation states, such as (NniPrCrII)22-NAd) (2), NniPrCrIII2-N4Ad2) (3), or NniPrCrV(NAd)2 (4). Compound 1 was found to reductively couple 3-pentanone to form NniPrCr(κ2-O2C2Et4) (5) and reductively couple benzylidene aniline to form both NniPrCrIII(cis2-C28H22N2) (6a) an NniPrCrIII(trans2-C28H22N2) (6b). Reaction with a stochiometric amount of benzylidene aniline yielded the imine complex NniPrCr(η2-NPhCHPh) (7). Exposure of 1 to a bulky isocyanide formed the octahedral NniPrCrI[CN(C6H4(Me)2]4 (9). Complex 1 was also found to break the O-O, NO, and S-S bonds in various small molecules to form NniPrCrII(OCMe3) (11), NniPrCrV(O)(NPh) (8), and [NniPrCrII(μ-SPh)]2 (10).  相似文献   

15.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

16.
A novel effect of the inhibition of the decomposition of amino acids to carbonates on addition of imidazole (HIm) to a reacting system containing equimolar amounts of copper and zinc metal powders, an amino acid [glycine (Hgly), aspartic acid (H2Asp) or glycylglycine (H2gg)] (1:1:2) and excess hydrogen peroxide (H2O2) resulting in formation of a mixed metal mixed ligand peroxo complex compound was observed, because in the absence of imidazole the corresponding reaction system yields only a mixed metal peroxo carbonate. For the resulting complex compounds, the homogeneity, i.e. [Cu(Zn)(O2 2–)(Gly)2(HIm)(H2O)], [Cu(Zn)(O2 2–)(Asp)(HIm)(H2O)2] or [Cu(Zn)2(O2 2–)2(gg)(HIm)(H2O)4], molecular formula, presence of peroxo group and coordination environment were established by combined physicochemical evidence from elemental and thermogravimetric analysis in air and argon atmospheres, electron spin resonance and electronic and IR spectral data. It is noteworthy to mention that the corresponding carboxylic acids of the above-mentioned amino acids, i.e. acetic and succinic acids, either do not decompose to carbonates in the absence of imidazole or form novel homogeneous peroxo mixed metal mixed ligand complex compounds as described above in the presence of imidazole. This suggests an important and significant mutual influence (in vitro) of biologically active chromophores like peroxo ions, imidazole and amino groups in the above-mentioned chemical reactions containing bioactive metals such as copper and zinc.  相似文献   

17.
A preparative procedure of potentially wide applicability is described for the synthesis of previously unreported tris(heteroleptic) [Cr(diimine)3]3+ complexes. The synthetic scheme involves the sequential addition of three different diimine ligands, and employs CrCl3 · 6H2O as the initial Cr(III) reagent. The synthesis and characterization of the complexes [Cr(TMP)(phen)(diimine′)]3+ are reported (where TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline, phen = 1,10-phenanthroline; and diimine′ is either bpy = 2,2′-bipyridine, Me2bpy = 4,4′-dimethyl-2,2′-bipyridine, 5-Clphen = 5-chloro-1,10-phenanthroline, or DPPZ = dipyridophenazine). Chiral capillary electrophoresis and electrospray mass spectrometry were essential aids in determining the presence or absence of diimine ligand scrambling. Utilizing emission and electrochemical data obtained on these compounds, the oxidizing power of the lowest lying excited state (2Eg(Oh)) was calculated, and was found to vary in a systematic fashion with diimine ligand type.  相似文献   

18.
A mononuclear cobalt(III)-peroxo complex bearing a macrocyclic tetradentate N4 ligand, [CoIII(TMC)(O2)]+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was generated in the reaction of [CoII(TMC)]2+ and H2O2 in the presence of triethylamine in CH3CN. The reactivity of the cobalt(III)-peroxo complex was investigated in aldehyde deformylation with various aldehydes and compared with that of iron(III)- and manganese(III)-peroxo complexes, such as [FeIII(TMC)(O2)]+ and [MnIII(TMC)(O2)]+. In this reactivity comparison, the reactivities of metal-peroxo species were found to be in the order of [MnIII(TMC)(O2)]+ > [CoIII(TMC)(O2)]+ > [FeIII(TMC)(O2)]+. A positive Hammett ρ value of 1.8, obtained in the reactions of [CoIII(TMC)(O2)]+ and para-substituted benzaldehydes, demonstrates that the aldehyde deformylation by the cobalt(III)-peroxo species occurs via a nucleophilic reaction.  相似文献   

19.
BackgroundChromium (Cr) exists in the environment in two chemical forms; CrIII is an essential micronutrient for glucose and lipid metabolism, whereas CrVI is toxic and a recognised carcinogen through inhalation. Numerous studies have attempted to evaluate their transfer mechanisms from soil and solution media into plants, usually with respect to the hyperaccumulation, detoxification and tolerance of the plant to CrVI.MethodsIsotopically enriched species of Cr, added as 50CrIII and 53CrVI, were used to investigate transfer from solution into the root systems of Spinacia oleracea. In addition the effect of sulphate (SO42−), as a competitor for CrVI uptake, was investigated. Separation of 50CrIII and 53CrVI was undertaken using HPLC-ICP-QQQ following isolation of root solutions using freeze/thaw centrifugation.ResultsIrrespective of supplied CrVI concentration (250, 500 or 1000 μg L−1), the dominant species in both apoplastic (routed through cell wall and intercellular space as a passive mechanism) and symplastic (routed through cytoplasm as an active mechanism) root solutions was CrIII. There was evidence for CrVI reduction in the rhizosphere prior to uptake as an additional detoxification mechanism. Sulphate promoted uptake of CrVI through the active pathway, although increases in SO42- concentration did not yield a proportional increase in Cr symplastic solution concentration; CrIII was also the dominant species in these root solutions.ConclusionThe results indicate that Spinacia oleracea plants can effectively reduce CrVI to CrIII and that the uptake pathways for both CrIII and CrVI are more complex than previously reported. Further work is required to understand the physiological processes that result in the reduction of CrVI prior to, and during, uptake. The efficacy of sulphate to augment existing agricultural management strategies, such as liming and organic reincorporation, also requires further investigation to establish suitable application rates and applicability to other environmental contaminants.  相似文献   

20.
The hydrothermal reactions of NH4VO3, Cu(NO3)2·H2O or Cu(CH3CO2)2·H2O As2O5 and the appropriate organonitrogen ligand in the presence of HF as mineralizer yield a series of bimetallic oxides of the Cu/V/O/As family. The materials [Cu(bpy)(VO2)(AsO4)] (1) and [Cu(bpy)VO2(OH)(AsO4H)]·H2O (2·H2O) are one-dimensional (bpy = 2,2′-bipyridine). While phase 1 is constructed from chains decorated by {Cu(bpy)}2+ groups, compound 2 consists of {V2O4(OH)2(AsO4H)2}2− clusters linked through {Cu(bpy)}2+ subunits. In contrast, the structure of [Cu2(bpyrm)(VO2)2(AsO4)2]·H2O (3·H2O) is three-dimensional, consisting of layers, linked through {Cu2(bpyrm)}4+ rods (bpyrm = bipyrimidine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号