首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
Abstract

Crude root extracts of the black beetle-resistant legumes red clover, white clover, lupin, Lotus pedunculatus, and lucerne significantly reduced feeding by 3rd-instar black beetle larvae when incorporated in an artificial medium containing a strong feeding stimulant. The same extracts were toxic when administered orally. Lucerne and L. pedunculatus contain particularly active feeding deterrents and toxins. The root of the black beetle-resistant grass Phalaris aquatica (= P. tuberosa), like that of the susceptible perennial ryegrass, had no effect on larval feeding or survival. Lotus pedunculatus was very much more active against black beetle larvae than L. corniculatus or L. corniculatus × pedunculatus.  相似文献   

2.
The effects of root feeding by larvae of Sitona hispidulus (F.) (a common weevil pest of white clover) on the rate of transfer of nitrogen between plants of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were investigated using a nutrient slant board technique. Clover plants, labelled with 15N were grown adjacent to ryegrass plants and were either infested with Sitona larvae or not infested. Ryegrass plants associated with the infested clover plants had a significantly higher dry matter yield and nitrogen content (75% and 74% respectively) than the uninvested plants, after 33 days exposure to insect herbivory. It was concluded that root feeding insects could play an important role in the cycling of nitrogen in grass/clover swards.  相似文献   

3.
Three experiments are reported which examine the relative roles of host and Rhizobium genotypes as factors limiting clover (Trifolium repens L.) growth at low soil temperatures.In the first experiment un-nodulated clover and perennial ryegrass (Lolium perenne L.) were grown with non-limiting nitrate at root temperatures of 8, 10 and 12°C. The ryegrass had substantially better relative growth rates (RGR) than the clover with the biggest difference occurring at 8°C. Alterations in growth rate with temperature were more marked in clover than in ryegrass but the latter still produced several times more dry matter than clover at each temperature.In the subsequent experiments clover nodulated with different strains of rhizobia was grown with and without non-limiting additions of nitrate at root temperatures of 9, 12 and 15°C. Plants receiving nitrate generally produced more dry matter than those dependent upon Rhizobium for nitrogen but differences in yield between these treatments did not alter with temperature. This suggests that limitations imposed by nitrogen fixation are similar at both high and low temperatures. Indeed, there was some evidence that nitrogen limitations were rather more pronounced at the highest temperature. The first experiment clearly demonstrated that the clover genotype makes particularly poor use of nitrate at low root temperatures when compared to its common companion perennial ryegrass.It can be concluded that improvements in spring growth of clover will rest largely with alterations to the plant genotype and its ability to use combined nitrogen for growth at lower temperatures rather than with changes in rhizobia or any symbiotic characters.  相似文献   

4.
The degree of plant root digestion by grass grubs (Costelytra zealandica) has been evaluated by scanning electron microscope examination of plant residues in faeces. Faecal pellets were examined from grubs fed on roots of pure plant species (perennial ryegrass, Lolium perenne, and white clover, Trifolium repens) under soil-free conditions, as well as from naturally occurring grubs on mixed pasture. There was considerable variation in the degree of digestion observed with different plant species. Clover root was more extensively digested with formation of partially digested xylem vessels, whereas ryegrass root appeared to undergo very little digestive breakdown. These results indicate that plant structural carbohydrates undergo limited digestion by the grass grub. Thus grass grubs may require a high turnover of dietary root material, which would explain the highly destructive effect of the larvae on pasture plants.  相似文献   

5.
For pastures, root turnover can have an important influence on nutrient and carbon cycling, and plant performance. Turnover was calculated from mini‐rhizotron observations for chicory (Cichorium intybus), lucerne (Medicago sativa), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) grown in the Manawatu, New Zealand. The species were combined factorially with four earthworm species treatments and a no‐earthworm control. Split plots compared the effects of not cutting and cutting the shoots at intervals. Observations were made c. 18 days apart for 2.5 years. This article concentrates on differences between plant species in root turnover in the whole soil profile to 40 cm depth. At this scale, earthworm effects were generally small and short lived. For ryegrass and white clover, root length and mass were linearly related (R2 = 0.82–0.99). For chicory and lucerne, the relationships were poorer (R2 = 0.38–0.77), so for those species length turnover may be a poor indicator of mass turnover. Standing root length, total growth and death generally decreased in the sequence ryegrass > lucerne > chicory = white clover. In length terms, scaled turnover (growth divided by average standing root length) generally followed the sequence lucerne > white clover > perennial ryegrass = chicory. Across species the scaled turnover rate averaged 3.4 per year or 0.9% per day. Cutting shoots reduced standing root length, growth and death, but increased scaled turnover. These results indicate fast and prolonged root turnover. For ryegrass and white clover, at least there is need to reappraise how to measure and model shoot : root ratios, dry matter production and carbon cycling.  相似文献   

6.
Root exudates: a pathway for short-term N transfer from clover and ryegrass   总被引:16,自引:1,他引:15  
The short-term transfer of nitrogen (N) from legumes to grasses was investigated in two laboratory studies. One study was done in pots where the roots of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were allowed to co-exist, and a second study was performed using a micro-lysimeter system designed to maintain nutrient flow from the clover to the grass, whilst removing direct contact between the root systems. The 15N-dilution technique was used to quantify the transfer of N between species. Levels of ammonia and amino acids were measured in root exudates. The amounts of N transferred were in the same order of magnitude in both the pot and micro-lysimeter experiments. In the micro-lysimeter experiment, 0.076 mg of N were transferred per plant from clover to ryegrass during the course of the experiment. Ammonium exudation was much higher than amino acid exudation. The most abundant amino acids in both clover and ryegrass root exudates were serine and glycine. However, there was no correlation between the free amino acid profile of root extracts and exudates for both plant species: Asparagine was the major amino acid in clover roots, while glutamine, glutamate and aspartate were the major amino acids in ryegrass roots. Comparison of exudates obtained from plants grown in non-sterile or axenic conditions provides evidence of plant origin of ammonium, serine and glycine.  相似文献   

7.
Six mixed species, perennial pastures at two locations, A (four pastures) and B (two pastures), were sampled at regular intervals over periods of 10 to 22 months. The predominant plant species present were white clover (Trifolium repens), perennial ryegrass (Lolium perenne) and kikuyu grass (Pennisetum clandestinum). To determine the extent to which incidences of viruses transmitted in different ways change in the same pastures over time, samples of each plant species were taken at random on every visit and tested for virus presence. To help identify factors that might explain changes in virus incidence, records were also made of aphid presence, pasture management practices, grazing regimes, sward height and the relative proportions of different plant species within the swards. Samples of white clover were tested for presence of Alfalfa mosaic virus (AMV) and White clover mosaic virus (WCMV), ryegrass for Barley yellow dwarf virus (BYDV) and Ryegrass mosaic virus (RyMV), and kikuyu grass for BYDV and potyvirus infection. AMV and WCMV were detected in white clover, and BYDV and RyMV in ryegrass at both locations but often with wide incidence fluctuations for the individual viruses. AMV incidences in white clover ranged from 0% to 19% at A, and from 27% to 100% at B. WCMV incidences in white clover fluctuated between 9% and 46% at B, but never exceeded 1% at A. RyMV incidences in ryegrass fluctuated between 3% and 34% at A, and 19% and 73% at B. BYDV incidences in ryegrass ranged from 0% to 6% at A and 4% to 17% at B. In kikuyu grass, an unknown potyvirus and BYDV were detected twice (1% incidence) and once (4% incidence) respectively at B, and the unknown potyvirus only once (2% infection) at A. During repeated trapping of aphids in four pastures (two each at A and B), numbers of aphids caught varied widely between trapping dates and between individual pastures on the same trapping date. The species caught were Acyrthosiphon kondoi, A. pisum, Aphis craccivora, Rhopalosiphum padi and Therioaphis trifolii. Except in summer, when only T. trifolii was caught, A. craccivora was the most abundant. The trends in incidence for each virus within each pasture were compared with those from the other pastures sampled over identical periods to determine whether there was any commonality. For RyMV in ryegrass, overall incidence trends within the different pastures at both locations resembled each other during the same sampling periods. Within pastures at the same location there was commonality in incidence trends for RyMV and BYDV in ryegrass, but with AMV in white clover periods of similarity were rare even when pastures were adjacent and managed identically. Unravelling the individual effects of alterations in season, vector numbers, mowing, intermittent heavy grazing and pasture species composition on virus incidence proved difficult due to complex interactions between these and other factors influencing new spread or declining virus occurrence.  相似文献   

8.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Adult clover root weevil Sitona lepidus show a feeding preference for white clover Trifolium repens over red clover Trifolium pratense. The effects on S. lepidus of three red clover T. pratense lines, selected for high, medium, or low levels of the isoflavone formononetin in foliage, were compared in three experiments using white clover as a control. In a no‐choice slant board experiment, weevil larval weights were greater for larvae feeding on white clover roots than those feeding on roots of the red clovers. The effect of larval root herbivory on plant growth was similar for all four clovers. Following root herbivory, a large increase in root and shoot formononetin levels was observed in the high‐formononetin selection of red clover but little change in the low‐formononetin red clover. In a no‐choice experiment with sexually mature female adult weevils feeding on foliage of the four clovers, all the red clovers had increased weevil mortality. Female weevils eating the high‐formononetin red clover laid fewer eggs than weevils eating white clover. The red clover diet caused a large accumulation of abdominal fat and/or oil in the weevils, whereas weevils feeding on white clover did not accumulate fat/oil. When sexually immature adult weevils were given a choice of foliage from all four clovers, white clover was eaten preferentially, and the low‐formononetin red clover was preferred to the high‐formononetin red clover. The results suggest that formononetin and associated metabolites in red clover may act as chemical defences against adult S. lepidus and that distribution in forage legumes can be manipulated by plant breeding to improve root health.  相似文献   

10.
 The effect of arbuscular mycorrhiza (AM) on white clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons (PAH) was assessed in a pot experiment. The soil was spiked with 500 mg kg–1 anthracene, 500 mg kg–1 chrysene and 50 mg kg–1 dibenz(a,h)anthracene, representing common PAH compounds with three, four and five aromatic rings, respectively. Three treatments and two harvest times (8 and 16 weeks) were imposed on plants grown in spiked soil: no mycorrhizal inoculation, mycorrhizal inoculation (Glomus mosseae P2, BEG 69) and mycorrhizal inoculation and surfactant addition (Triton X-100). Pots without PAH were also included as a control of plant growth and mycorrhizal colonization as affected by PAH additions. The competitive ability of clover vis-à-vis ryegrass regarding shoot and root growth was enhanced by AM, but reduced by PAH and the added surfactant. This was reflected by mycorrhizal root colonization which was moderate for clover (20–40% of total root length) and very low for ryegrass (0.5–5% of total root length). Colonization of either plant was similar in spiked soil with and without the added surfactant, but the PAH reduced colonization of clover to half that in non-spiked soil. P uptake was maintained in mycorrhizal clover when PAH were added, but was reduced in non-mycorrhizal clover and in mycorrhizal clover that received surfactant. Similar effects were not observed on ryegrass. These results are discussed in the context of the natural attenuation of organic pollutants in soils. Accepted: 12 June 2000  相似文献   

11.
Bean leaf roll virus (BLRV) and pea enation mosaic virus (PEMV) were each transmitted by Acyrthosiphon pisum (Harris) to fifteen of thirty species of legumes in the glasshouse; eleven species were susceptible to both viruses. The only biennial or perennial species infected by BLRV were hop trefoil (Medicago lupulina L.), lucerne (M. sativa L.) and red clover (Trifolium pratense L.), but naturally infected sainfoin (Onobrychis viciifolia Scop.) and white clover (T. repens L.) were found. The only perennial species infected with PEMV in the glasshouse was kidney vetch (Anthyllis vulneraria L.). Eggs of A. pisum, which seems to be the main vector of BLRV and PEMV in England, were found in winter on several species of cultivated perennial legumes, most on lucerne, fewest on white clover. In spring, more viviparae of A. pisum were found on lucerne than on other perennial legumes, and many on lucerne, but few on red or white clover, were infective with BLRV. Lucerne is probably the main overwintering source of BLRV in areas where lucerne is common, but elsewhere red and white clovers are probably as important. No aphid collected from perennial legumes between 1965 and 1968 was infective with PEMV, but this virus can overwinter in common vetch (Vicia sativa L.). Lucerne infected with BLRV was usually symptomless or showed only transient mild yellowing of young leaves. Lucerne plants showing vein-yellowing, similar to that previously reported as a symptom of BLRV, were possibly infected with an aberrant strain of BLRV but more probably with BLRV and another aphid-transmitted agent. Inoculations from lucerne with vein-yellowing symptoms sometimes caused vein-yellowing, and sometimes typical BLRV-symptoms, in crimson clover (Trifolium incarnatum L.).  相似文献   

12.
Abstract The perennial ryegrass, Lolium perenne, forms a symbiotic relationship with Neotyphodium lolii, a fungus that produces alkaloids. This relationship provides a competitive advantage to the host plant in grassland communities by increasing drought tolerance, and disease and herbivore resistance. Black cutworm, Agrotis ipsilon, is among the few insect species that are able to feed and develop on endophytic perennial ryegrass. Some insects can use plant secondary compounds to defend themselves against predators, therefore we hypothesized that the cutworms fed on endophytic grasses would exhibit greater defense against a lethal endoparasitic nematode, Steinernema carpocapsae. Laboratory experiments involving 4–5th instars support the hypothesis that A. ipsilon feeding on grass clippings from field plots with high (> 90%) incidence of endophyte infected perennial ryegrass are less susceptible to entomopathogenic nematodes than larvae fed grass clippings from plants with little or no incidence of endophyte. Laboratory studies resulted in similar overall mortality after 48 h. Field studies, however, show decreased susceptibility to S. carpocapsae when larvae were confined to areas of endophytic grass (> 75% infected). Early instars (2–3rd) fed on endophyte free grass suffered greater overall mortality at all nematode concentrations than 4–5th instars fed similarly. Early (2–3rd) instars were equally susceptible to nematode attack regardless of food source. Our results indicate that the fungal endosymbionts of grasses can influence the biology of natural enemies of an herbivorous insect.  相似文献   

13.
An experiment is described in which the magnitude of N transferred from damaged white clover roots to perennial ryegrass was determined, using 15N labelling of the grass plant. There was no effect on the growth and N-fixation of the clover plants after removing part of the root system. The 15N data suggested that N had been acquired by all grass plants, even in plants grown alone with no further N supplied after labelling. However, after quantifying the mobile and stored N pools of the grass plants it was evident that significant transfer of N from clover to grass only took place from damaged clover roots. Dilution of the atom% 15N in the roots of the grass plants grown alone, and in association with undamaged clover roots, was explained by remobilisation of N within the plant.  相似文献   

14.
Mixing the ryegrass mosaic virus (RMV) resistant perennial ryegrass (Lolium perenne) cv. Endura with the susceptible Italian ryegrass (L. multiflorum) cv. RvP decreased infection of RvP wth RMV from 37% when grown alone to 22% when mixed. However, Endura yielded less than RvP and there was no yield benefit from mixing the two cultivars. Mixing red clover (Trifolium pratense) cv. Hungaropoly with RvP had no detectable effect on RMV incidence in RvP but did decrease the incidence of red clover necrotic mosaic virus in Hungaropoly from 9% to 1% and of white clover mosaic virus from 53-5% to 41%. The yield of the mixture was equal to that of RvP grown alone but given nitrogen fertiliser. The numbers of eriophyid mites, including Abacarus hystrix the vector of RMV, on ryegrass leaves were similar in pure and mixed swards. It is concluded that with herbage crops, the common practice of sowing mixtures of species may help control virus diseases.  相似文献   

15.
The effects of phosphorus (P) application and mycorrhizal inoculation on the root characteristics of subterranean clover and ryegrass were examined. Phosphorus application increased total root length, root surface area and root volume of both plant species. In contrast, mycorrhizal infection only affected the root characteristics of subterranean clover. Ryegrass took up more P than non-mycorrhizal subterranean clover at all levels of application. However, mycorrhizal infection only increased P uptake by subterranean clover and there was no difference in P uptake between ryegrass and mycorrhizal subterranean clover at low levels of P application. When the P uptake was expressed on the basis of any of the root characteristics, subterranean clover were superior to ryegrass suggesting that the greater uptake of P by ryegrass is not due to a higher efficiency in absorption of P from soil solution, but rather to a large root system.  相似文献   

16.
Pink snow mould is a serious disease on grasses and winter cereals in cold and temperate zones during winter. To better understand the basis for the variation in pathogenicity between different isolates of Microdochium nivale and M. majus and to simplify selection of highly pathogenic isolates to use when screening for resistance to pink snow mould in perennial ryegrass, we sought traits correlated with pathogenicity. Isolates of M. nivale were more pathogenic on perennial ryegrass than isolates of M. majus, as measured by survival and regrowth of perennial ryegrass after infection and incubation under simulated snow cover. Pathogenicity as measured by relative regrowth was highly correlated with fungal growth rate on potato dextrose agar (PDA) at 2°C. Measuring fungal growth on PDA therefore seems to be a relatively simple method of screening for potentially highly pathogenic isolates. In a study of a limited number of isolates, highly pathogenic isolates showed an earlier increase and a higher total specific activity of β‐glucosidase, a cell wall‐degrading enzyme, compared with less pathogenic isolates. None of the M. majus isolates was highly pathogenic on perennial ryegrass. Our results indicate biological differences between M. nivale and M. majus and thus strengthen the recently published sequence‐based evidence for the elevation of these former varieties to species status.  相似文献   

17.
Summary Within the limits of the experiment,i.e. 60 cm, the depth of rooting of three pasture species in a sandy loam soil was found to be directly affected by the depth to which irrigation water penetrated the soil. Some practical implications for irrigation farming are discussed.The species reacted differently to the deeper wetting treatments; white clover produced a larger weight of roots, subterranean clover a lesser weight, and there was no difference in the weight of roots with perennial ryegrass. However, the weight of roots relative to the total weight of the plant decreased with increase in the wetting depth in all three species. The effect of growth of roots on the total growth of the plants is discussed and it is suggested that root growth is not a determinate of total production when the supply of nutrients is not limiting.The vertical distribution of the roots is discussed.  相似文献   

18.
Persistence of forage grasses is enhanced through the deliberate and selective use of symbiotic fungal endophytes that confer benefits, particularly pest resistance. However, they have also been implicated in reduced plant community diversity as a result of directly or indirectly enhancing competitive ability. A relatively underexplored mechanism by which endophytes might influence pasture plant composition is by altering the biotic or abiotic soil conditions. To examine the soil conditioning effects of forage grass species and their fungal symbionts we tested the responses of three pasture plants, perennial ryegrass, prairie grass, and white clover in nine different soils that had been conditioned by monocultures of endophyte-containing (E+), or endophyte-free (E?), perennial ryegrass, tall fescue, or meadow fescue. Conditioning grass species had little effect on the responses of perennial ryegrass and prairie grass regardless of E+ or E? treatments. In contrast, conditioning species had a strong effect on the response of white clover, resulting in reduced biomass when grown in perennial ryegrass conditioned soils. The presence of endophyte also had significant growth consequences for white clover, but was either positive or negative depending on the conditioning grass species. In comparison to their respective E? treatments, E+ tall and meadow fescue conditioned soils resulted in reduced biomass of white clover, whereas E+ perennial ryegrass conditioned soils resulted in increased biomass of white clover. Among the conditioning strains (AR1, AR37, NEA2, WE) of E+ perennial ryegrass, white clover showed significantly different responses, but all responses were positive in comparison to the E? treatment. By examining the effects of several grass species and endophyte strains, we were able to determine the relative importance of grass species vs. fungal symbiont on soil conditioning. Overall, the conditioning effect of grass species was stronger than the effects associated with endophyte, particularly with regard to the response of white clover. We conclude that both grass species and their fungal endophytes can influence pasture plant community composition through plant–soil feedback.  相似文献   

19.
The effects of stem nematode (Ditylenchus dipsaci) infestation on the establishment of white clover sown in mixed swards with perennial ryegrass, were investigated in two field trials. Clover cultivars known to have different degrees of resistance were sown on land in which stem nematode was controlled either by aldicarb (Experiment 1) or crop rotation (Experiment 2). The establishment of white clover was greatly improved and subsequent clover yields were inversely related to stem nematode infestation. At the first harvest after sowing, clover yields were 3.6 and 3.3 times greater from aldicarb and rotation treatment plots than from check plots; over the first nine months, total clover yields were increased by 3.5 and 8.9 times by aldicarb and rotation treatments. In both trials, plots of resistant cultivars had less stem nematode infestation and yielded better than the very susceptible cultivar, S184. Stem nematode infestations eventually developed on all plots, after the establishment phase. This is the first report showing that resistant cultivars improve establishment of clover in mixed swards on stem nematode infested soils. In both experiments, plots became dominated by clover and even cv. S184 eventually produced good clover swards. Aldicarb and rotation treatments also controlled clover cyst and root lesion nematodes, and numbers of these were inversely related to first harvest yields. Other soil borne pests and diseases, although not prominent, have not been ruled out as possible confounding factors. There was no correlation between grass yield and aldicarb treatment.  相似文献   

20.
Abstract

The relative consumption by third-instar black beetle larvae of roots of paspalurn, ryegrass, and white clover was determined from the rate of passage of ingested glass beads through the gut Consumption of grasses exceeded that of white clover, indicating their greater acceptance as a food source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号